- Микрюкова, М. В. Загоруйко, В. А. Штейнле // Журнал Вестник технологического университета. 2017. Т. 20. № 22. С. 69–73.
- 9. Зубкова, Н. С. Снижение горючести поликапроамида и полиэтилентерефталата путем введения микрокапсули-рованных замедлителей горения / Н.С. Зубкова, М.А. Тюганова, Н.Ю. Боровков, А.П. Морыганов // Химические волокна. 1995. № 5. С.40—43.
- 10. Бесшапошникова, В. И. Исследование влияния фосфорсодержащих замедлителей горения на структуру, свойства и пиролиз ПАН волокна / Бесшапошникова В. И. // Известия высших учебных заведений. Серия: Химия и химическая технология. 2005. Т. 48, № 2. С. 67.
- 11.Исследование воспламеняемости текстильных материалов / Бесшапошникова В. И., Загоруйко М. В., Александрова Т. В., Сладков О. М., Пулина К. И. // Известия высших учебных заведений. Технология текстильной промышленности. 2013. № 5 (347). С. 11–13.

УДК 677.08

ИССЛЕДОВАНИЕ ВОЗМОЖНОСТЕЙ ПРОИЗВОДСТВА ПНЕВМОМЕХАНИЧЕСКОЙ ПРЯЖИ ИЗ ПРЯДОМЫХ ОТХОДОВ

Махкамова Ш.Ф.,ст. преп., Гафуров Ж.К., д.т.н., с.н.с., Бурханов Д.Х., магистр, Гафуров К., к.т.н., проф.

Ташкентский институт текстильной и легкой промышленности, г. Ташкент, Республика Узбекистан

<u>Реферат.</u> В статье приведены результаты регенерации прядомых волокнистых отходов и исследованы возможности рационального использования отходов в производстве пневмомеханической пряжи различных линейных плотностей.

<u>Ключевые слова</u>: волокнистые отходы, очистка, регенерация, выход волокна, пряжа, качество продукции.

Увеличение объема переработки волокна, безусловно, приводит к выделению большего количества волокнистых отходов. В хлопкосеющих странах, в частности в Узбекистане, с каждым днем увеличивается объем переработки хлопкового волокна на местных предприятиях. Рациональное использование волокнистых отходов в качестве вторичного сырья становится актуальной задачей промышленности. Для решения данной задачи проведено экспериментальное исследование по переработке прядомых волокнистых отходов в пневмомеханическую пряжу. Для этого смесь волокнистых отходов — стандарт 3 в объеме 30 %, стандарт 7 в объеме 30 % и стандарт 11 в объеме 40 % была переработана на регенераторе китайской фирмы «SHANDONG SHUNXING MACHINERY CO. LTD».

Для выявления возможности использования регенированного из прядомых отходов волокна в пневмомеханическую пряжу исследованы характеристики его свойств. Прядомые отходы позволяют сэкономить полноценное волокно и снизить себестоимость вырабатываемой продукции. Поэтому многие предприятия в качестве сырья для пневмомеханической пряжи используют частично прядомые волокнистые отходы, выделяемые на своем производстве. Поэтому исследование возможности безотходной переработки волокон в пряжу, безусловно, является актуальной проблемой. В прядении хлопкового волокна доминирующее значение имеет длина волокна, в связи, с чем был исследован именно этот показатель. Для определения длины волокна в отходах был применен метод индивидуального промера волокна. В результате испытаний установлено, что в составе стандартов ст 3, ст 7 и ст 11 содержатся волокна, длина которых колеблется в пределах от 6 мм до 36 мм. Следует отметить, что в ст 3 более 15 % волокна имеют длину свыше 20мм, а волокна этой длины в ст 7 и в ст 11 составляют более 20 %. Во всех прядомых отходах встречаются сравнительно длинные (свыше 30мм) волокна, что показывает возможность их использования в качестве сырья для производства пневмомеханической пряжи. Также необходимо отметить, что в составе отходов короткие волокна длиной менее 10мм составляют 10 %.

Очиститель китайской фирмы «SHANDONG SHUNXING MACHINERY CO LTD» представляет собой двухбарабанный пильчатый регенератор, снабженный двумя

УО «ВГТУ», 2018 **283**

отсасывающими вентиляторами. Регенерированные волокна из очистителя выходят в виде ватки-слоя, который накапливается для транспортировки по назначению. Таким образом, из смеси волокнистых отходов прядильного производства получено регенерированное волокно. Выход волокна из прядомых отходов составляет 70,2 %. Полученные регенерированные прядомые волокна подвергались к испытаниям по определению показателей свойств на приборе HVI 1000 (табл. 1).

Таблица 1 – Показатели свойств регенерированного волокна

Наименование показателей	Микронейр, Міс	Разрывная нагрузка, сН/текс	Верхняя полусреняя дпина, дюйм (мм)	Равномерно сть	SFI	Удлинение, %	Содержание сора, %	Cnt	Rd	q ₊
Значения показателей	4,5	24,9	1,01(25,65)	76,2	26,2	6,6	2	6	72,1	9,9

Очиститель удаляет пыль и короткие волокна очень эффективно, вследствие чего содержание сора в регенерированном волокне не превышает 2 %. Другие показатели свойств показывают вполне пригодность регенерированного волокна для получения пряжи пневмомеханическим способом.

Пряжа линейной плотности 20 текс была выработана из 100 % регенерированного волокна и с добавлением в смесь 15 % волокна 4 типа первого сорта. План прядения пряжи линейной плотности 20 текс приведен в таблице 2. Число кручений пряжи при этом варьировалось на трех уровнях, то есть 860, 930 и 1030 кр/м.

Таблица 2 – План прядения пневмомеханической пряжи линейной плотности 20 текс

таолица 2 тт	лан придении п	i o bili o ili o xia i i i i i c	TOROTT TIPTIMET TH		<u> </u>	20 1010	
	Линейная	Число	_	Крут	$n_k \cdot 10^3$,		
Машины	плотность, текс	сложения	Вытяжка	К, кр/м	$\alpha_{_m}$	мин ⁻¹	
Чесальная ТС- 07	4916		-	-	-	-	
Ленточная 1 переход, TD-02	4916	8	8	-	-	-	
Ленточная 2 переход, TD-03	4916	6	6	-	-	-	
Прядильная ОЕ AS-360	20	245,6	1	860 930 1030	38,5 41,6 46,1	120	

Пряжа линейной плотности 20текс была выработана с частотой вращения прядильной камеры 120000 мин⁻¹ при её диаметре 33мм.

Проведено испытание физико-механических свойств образцов пряжи. Результаты испытаний неровноты и дефектов приведены в таблице 3.

Как видно из таблицы, образцы пряжи имеют различные показатели, особенно по дефектам. По числу дефектов образцы пряжи с добавлением 85 % регенерированного волокна (860, 930 кр/м) отвечают требованиям международного стандарта, но остальные варианты не отвечают этим требованиям.

Наибольшее число толстых мест (100 шт) встречается на первом образце из 100 % регенерированного волокна, а наибольшее число непсов попадает на пряжу линейной третьего варианта. Пряжа из смеси с добавлением 85 % регенерированного волокна имеет меньшее количество дефектов и более высокие показатели разрывной нагрузки.

Также были выработаны из 100 % регенерированного волокна образцы пряжи линейных плотностей 30 и 40 текс, разрывная нагрузка которых превышает (13,3 сН/текс, 12,0 сН/текс) показатели пряжи 20 текс. Неровнота по разрывной нагрузке пряжи колеблется от 7 % до 9,6 %.

Таблица 3 – Показатели свойств пряжи линейной плотности 20 текс двух вариантов

выработки

вырасстки								
ΝΝ π/π	Крутка пряжи,кр/м	Квадратическая неровнота, %	УКЭ, СН/Текс В места, ПТ		Толстые места, шт	Непсы, шт/км		
смесь с добавлением 85 % регенерированного волокна								
1	860	15,4	12,0	27	60	98		
2	930	15,5	12,0	27	70	102		
3	1030	15,4	10,5	32	52	121		
100 % регенерированное волокно								
1	860	16,3	9,4	42	100	139		
2	930	16,3	10,0	47	72	135		
3	1030	17,2	9,8	60	95	158		

По международному стандарту USTER STATISTICS 2013 основным показателем категории качества является показатель прочности пряжи Rkm. По результатам испытаний образцов можно видеть, что максимальную прочность(12,0 сН/текс) имеет пряжа из смеси с добавлением 85 % регенерированного волокна. Минимальное значение прочности Rkm имеет пряжа, выработанная из 100 % регенерированного волокна. Следует отметить, что в таком случае показатель Rkm и другие аналогичные разрывные характеристики не могут отражать доразрывные характеристики, которые претерпевает пряжа в процессе её переработки. Поэтому для оценки действительной прочности необходимо анализировать и оценивать доразрывные характеристики пряжи, что предусматривается в дальнейших исследованиях. Это связано с тем, дискретизирующий валик вращается с постоянной установленной скоростью независимо от варьирования скоростей других рабочих органов. В идеальном случае в поперечном сечении дискретного потока должно быть одно волокно. Поэтому рекомендуется провести оптимизацию работы пневмомеханической прядильной машины для каждого конкретного ассортимента пряжи.

Таким образом, прядомые отходы прядильного производства регенерированы и определены показатели свойств волокон после регенерации. Разработан план прядения, а также проведен анализ результатов испытаний образцов пряжи различных линейных плотностей и выработанных с различной круткой.

По показателям неровноты (тонкие, толстые местных а, количество непсов) пряжа соответствует 50 % ой категории качества, а по показателю прочности совпадает нормам стандарта на пряжу. Это показывает, что волокнистые отходы прядомой группы (стандарты 3, 7, и 11) вполне приемлемы для производства пряжи пневмомеханическим способом прядения на соответствующем оборудовании. Таким образом, предварительно решена задача пригодности волокнистых отходов (стандартов 3, 7, и 11) после соответствующей их регенерации для производства пневмомеханической пряжи требуемого по стандарту качества.

Список использованных источников

- 1. Гафуров, Ж. К. Прогнозирование и оценка механических показателей пряжи с учетом особенностей технологических процессов прядения, автореферат дисс., Ташкент, 2016г.
- 2. Гофуров, К. Г., Махкамова, Ш. Ф., Валиева, З. Ф. Регенерация прядомых отходов хлопкопрядильного производства// Переработка отходов текстильной и легкой промышленности: теория и практика: материалы докладов международной научнопрактической конференции, Витебск 30 ноября / «ВГТУ». Витебск, 2016. С. 32–36.

УО «ВГТУ», 2018 **285**