МЕТОДИКА РАСЧЕТА ЗВУКОИЗОЛИРУЮЩИХ ОГРАЖДЕНИЙ ДЛЯ ТЕКСТИЛЬНЫХ МАШИН

Сажин Б.С., Кочетов О.С., Зубов П.О.

(МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕКСТИЛЬНЫЙ УНИВЕРСИТЕТ ИМ. А.Н. КОСЫГИНА)

Одним из наиболее эффективных конструктивных методов борьбы с шумом текстильных машин является метод звукоизоляции наиболее виброактивных узлов машин и агрегатов [1]. Так, например, у чулочно-носочных автоматов (ЧНА) наиболее шумными являются механизмы рабочего цилиндра и его привода. Рассмотрим методику расчета основных параметров звукоизолирующих ограждений на примере этих машин.

Кожух для рабочего цилиндра ЧНА «Гамма-105» имеет габаритные размеры 400х300х480 мм. Он выполнен негерметичным и имеет технологические отверстия для предствращения перегрева и удобства обслуживания. Между верхним ограждением, идущим по периметру рабочего цилиндра ограждением и предусмотрены два технологических отверстия размером 400х60 мм. В зоне привода и системы пневмооттяжки изделий предусмотрен цилиндра шумопоглощающий экран. Каждое из вышеперечисленных ограждений выполнено из металлического листа толщиной 1,5 мм, на который нанесены слои вибродемпфирующего и звукопоглощающего материалов. Для данного кожуха из конструктивных соображений были использованы шумопоглощающие панели по ТУ 38105674-80, состоящие из слоя битума в качестве вибродемпфирующего материала и слоя из нетканного материала, выполняющего функции звукопоглотителя. Подбор параметров и расчет основных геометрических размеров кожуха выполнялся на ПЭВМ

Расчет звукоизоляции кожуха проводился как для негерметичных ограждений по следующей зависимости

$$R_{\text{xi,sec map}} \le R_{\text{xi}} - 101g \left(\frac{\sqrt{1-\alpha} + \frac{\sum \tau_i S_{0i}}{\sum S_i} \cdot 10^{0.1 \text{Re}i}}{\alpha + \frac{\sum \tau_i S_{0i}}{\sum S_i} + (\sqrt{1-\alpha}) \cdot 10^{-0.1 \text{Re}i}} \right), \tag{1}$$

где $R_{\text{кож-тр}}$ - требуемая звукоизоляция кожуха, дБ, определяемая по формуле $R_{\text{кож-тр}} = L_{\parallel} - L_{\text{дол}} + 5$, (2)

L_I - октавный уровень звукового давления в расчетной точке от одиночно работающей изолируемой машины, дБ;

 $L_{\text{доп}}$ - допустимый по нормам уровень звукового давления в расчетной точке, дБ:

 R_{si} - средняя звукоизоляция сплошной части ограждений і-го кожуха, дБ; α -реверберационный коэффициент звукопоглощения внутри і-го кожуха:

 τ_i - энергетический коэффициент прохождения звука через глушитель технологического отверстия. Для простого отверстия τ_i =1 (простым отверстием считается отверстие без глушителя шума, как в нашем случае);

 ΣS_{\circ} - суммарная площадь технологических отверстий для і-го кожуха машины.м 2 ;

 ΣS_i - суммарная площадь сплошной части ограждения, м²;

I_{ii}b_{ii}h_i - соответственно длина, ширина и высота i-ого кожуха,м;

Величина реверберационного коэффициента звукопоглощения внутри ограждения определяется по формуле

$$\alpha = \frac{\alpha_o \left(\sum S_i - \sum S_w\right) + \alpha_w \sum S_w}{\sum S_i};$$
(3)

где α_{o} - реверберационный коэффициент звукопоглощения для ограждений без звукопоглощающего материала;

 $lpha_{
m w}$ - реверберационный коэффициент звукопоглощения звукопоглощающего материала:

Σ S_м - площадь нанесения звукопоглощающего материала, м².

Средняя звукоизоляция сплошной части ограждений, дБ, при наличии вибрационных нагрузок на элементы кожуха рассчитывается по формуле

$$R_{vi} = R_i K + 10 \lg \frac{7}{7_{vi}},$$
 (4)

где R_і - звукоизоляция материала ограждения, дБ,

К - коэффициент, учитывающий снижение звукоизоляции материала ограждений при действующем вибрационном возбуждении,

 η - коэффициент потерь конструкций кожухов со средствами вибропоглощения и вибродемпфирования.

 η_{o} - коэффициент потерь конструкций кожухов, не снабженных средствами вибропоглощения. Результаты расчета по формулам (1)... (4) сводим в общую табл.1.

Таблица 1. Сводная таблица расчета эффективности звукоизолирующего ограждения рабочего цилиндра ЧНА «Гамма-105» при скорости 220 мин⁻¹

N	Расчетные формулы	Среднегеометрическая частота октавных полос, Гц								
		63	125	250	500	1000	2000	4000	8000	
1	L _i , дБ	72	72	80	85	84	83	81	82	
2	L _{доп} , дБ	95	87	82	78	75	73	71	69	
3	R _{KOX.TD} =L ₁ - _{aon} +5	-18	-10	3	12	14	15	15	18	
4	R, дБ	3	17	21	25	28	32	36	35	
5	К	0	0,3	0,3	0,3	0,4	0,4	0,4	0,3	
6	η	0,03	0,03	0,04	0,07	0,1	0,06	0,04	0,02	
7	ηο	0,01	0,01	0,01	0,01	0,009	0,009	0,008	0,008	
8	R _{si} =R _i K+ 10lg(η/η _o), дБ	4,8	9,9	12,3	16	21,7	21	21	14,5	
9	αο	0	0,05	0,04	0,04	0,04	0,05	0,06	0,1	
0 1	α _M	0,01	0,15	0,25	0,56	0,85	0,9	0,9	0,9	
1	α	0,01	0,15	0,24	0,55	0,83	0,88	0,88	0,88	
2	R _{кож расч} , дБ	0,12	3,45	6,2	11,3	14,7	15	15	13,8	

1	L _i - R _{кож расч} , дБ	71,9	68,6	73,8	73,7	69,3	68	66	68,2
3									

Результаты расчетов, выполненных на ПЭВМ показали, что теоретическая эффективность звукоизоляции кожуха составляет в высокочастотной области порядка 13...15 дБ. В МГТУ им А.Н. Косыгина было спроектировано и испытано звукоизолирующее ограждение для рабочего цилиндра ЧНА, эффективность которого в полосе частот 500...8000 Гц составила 8...11 дБ, а по уровню звука 5 дБА. Несколько заниженная эффективность кожуха, полученная экспериментальным путем обусловлена тем. что в качестве звукопоглотителя при испытаниях использовался пенополиуретан (поролон), уступающий по своим характеристикам звукопоглотителю, принятому в расчете.

литература:

 А.с. СССР №1388484. Ограждение веретен текстильной машины// Кочетов О.С. и др. - Б.И. №14.1988г.