УДК 677.024.1 : [677.074 : 677.11]

ПРОЕКТИРОВАНИЕ КОСТЮМНОЙ ТКАНИ С ЭФФЕКТОМ ПРОДОЛЬНОЙ ПОЛОСЫ

Н.Н. Самутина, Г.В. Казарновская

Уточно-ворсовые переплетения: вельвет-корд, вельвет-рубчик - создают на поверхности ткани эффектные продольные ворсовые полосы различной ширины [1]. В Республике Беларусь производить материалы такой структуры не представляется возможным из-за отсутствия специального отделочного оборудования. Все уточно-ворсовые ткани вырабатываются с плотностью по утку, в два — три раза превышающей плотность по основе. Использование вышеуказанных переплетений в ассортименте тканей без разрезания ворсового утка с плотностью по утку меньшей, чем в уточно-ворсовых тканях, нецелесообразно, поскольку ткань при наличии большого числа длинных уточных перекрытий имеет неустойчивую структуру.

Впервые поставлена задача по созданию костюмных тканей в продольную полоску, разработанных с использованием льняных пряж на базе уточно-ворсовых переплетений. На рисунке 1,а показан рисунок переплетения проектируемой костюмной ткани. В строении ткани — одна система нитей утка, выполняющая двоякую функцию: образование грунта ткани и длинных уточных настилов, - и одна система основных нитей. В разработанном переплетении, в отличие от грунта классических уточно-ворсовых тканей, в качестве переплетения грунтового утка предложено два вида переплетений: репс основный 2/2 (нити утка 1, 2, 4, 8, 9, 10 12, 16) и полотняное переплетение (нити утка 6, 14), причем нити утка первого переплетения 8, 9, 10 и 12 по характеру расположения перекрытий являются зеркальным отображением нитей утка 4, 2, 1 и 16, соответственно. Раппорт переплетения грунта представлен на рисунке 1,б.

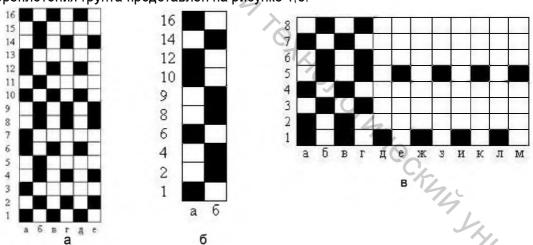


Рисунок 1 – Рисунки переплетений ткани: а) переплетение костюмной ткани с одноосновным закреплением настилочного утка; б) переплетение грунта костюмной ткани; в) переплетение костюмной ткани с трёхосновным закреплением настилочного утка

При выполнении функции настилочного утка (нити утка 3, 5, 7, 11, 13, 15) (рисунок 1,а) используется переплетение с длинными уточными настилами, закреплёнными по полотну на первых двух основных нитях (закрепление настила одноосновное).

Закрепление настилочного утка может осуществляться и другим количеством основных нитей, от чего зависит, при прочих равных условиях, ширина безнастилочной полоски, такие переплетения имитируют вельвет-корд. В работе

90 Витебск 2009

созданы переплетения с закреплением настилочного утка четырьмя и шестью нитями основы. В переплетении на рисунке 1,в четыре нити основы участвуют в закреплении настилочных утков (а, б, в, г), закрепление каждой настилочной уточины — трёхосновное. Так как переплетение ткани (рисунок 1,а) сочетает в себе два вида переплетений, существенным образом отличающихся между собой по количеству нитей в перекрытиях, особый интерес представляет изучение строения ткани на различных её участках с целью расчёта коэффициентов наполнения ткани волокнистым материалом по основе и утку. Данные коэффициенты являются комплексными параметрами строения ткани, поскольку учитывают сырьевой состав, порядок фазы строения, деформацию, фактическое расположение нитей основы и утка в ткани, они широко используются в распространённых методиках проектирования бытовых тканей по заданным свойствам (например, по поверхностной плотности).

С использованием спроектированных рисунков переплетений на РУПТП «Оршанский льнокомбинат» на станке СТБ-2-175 с жаккардовой машиной Z-344 выработаны образцы полульняных костюмных тканей, в основе которых – хлопчатобумажная пряжа линейной плотности 25 тексх2, в утке – льняная очёсковая пряжа линейной плотности 86 текс, плотность по основе 205 нит./10 см, по утку – 206 нит./10 см.

Изучение параметров строения ткани производилось по методу срезов [1]. Доверительный объём испытаний для определения значений каждого параметра рассчитан по предварительным опытам. Анализ точности оценки среднего значения каждого параметра позволил установить достаточный объём измерений, который равен 10 [2]. На рисунке 2 представлены фотографии срезов ткани по направлению нитей основы и утка для участков, характеризующихся различным количеством нитей в перекрытиях. По фотографиям видно, что нити обеих систем сохраняют в ткани форму поперечного сечения, близкую к кругу. Уток, при выполнении роли настилочного, располагается в ткани практически прямолинейно, в роли грунтового – значительно изогнут. Это говорит о том, что ткань на площади раппорта переплетения может иметь в различных местах различные значения параметров строения. Нити одной системы в местах их пересечения нитями другой системы располагаются по образующей волны изгиба противоположной системы нитей, а в длинных настилах (рисунок 2, б) — на некотором расстоянии друг от друга. Это расстояние зависит от коэффициента наполнения ткани волокнистым материалом.

По фотографиям срезов произведены замеры диаметров нитей основы и утка $(d_o,\ d_y)$, высот волн изгибов обеих систем нитей $(h_o,\ h_y)$, фактических расстояний между центрами нитей основы $(l_{o\varphi})$ и утка $(l_{y\varphi})$ в местах пересечения их нитями утка и основы, соответственно. По средним значениям замеров определены коэффициенты смятия нитей основы и утка $(\tau_o,\ \tau_y)$, коэффициенты, характеризующие порядок фазы строения ткани $(K_{ho},\ K_{hy})$ для каждого участка ткани, уработки нитей основы и утка.

Рисунок 2 - Срезы ткани: а), б) вдоль нитей утка; в), г) вдоль нитей основы

91

Геометрические плотности в местах пересечения нитей I_o , I_y , коэффициенты наполнения ткани волокнистым материалом по основе и по утку (K_{HO} , K_{HY}) рассчитаны по формулам, предложенным для проектирования однослойных тканей на кафедре ткачества МГТУ им. А. Н. Косыгина [1]. Результаты расчёта, а также фактические данные замеров представлены в таблице 1.

Из таблицы 1 видно, что нити основы в ткани имеют больший коэффициент смятия по сравнению с нитями утка, это объясняется, во-первых, условиями выработки ткани на станке, во-вторых, сырьевым составом основы и утка. На участках ткани с короткими перекрытиями нити основы сминаются в 1,14 раза больше, чем на участках с длинными настилами.

Высота волны изгиба нитей основы больше, чем нитей утка: на участках с короткими перекрытиями ткань находится в VI порядке фазы строения, на участках с длинными настилами – в промежуточном порядке фазы строения между V и VI.

Таблица 1 – Основные параметры строения ткани

Параметры	Фактические				Расчётные			
C	Нити основы		Нити утка		Нити основы		Нити утка	
	а	б	В	Γ	а	б	В	Г
d _{oп} , d _{yп} , мм	-				0,279		0,360	
d _o , d _y , мм	0,220	0,250	0,330	0,350	-	-	-	-
d _p , мм	,	> -	•	•	0,275		0,300	
$\tau_{\rm o}, \tau_{\rm v}$	-	0	-	-	0,789	0,896	0,917	0,972
h _o , h _y , мм	0,340	0,350	0,240	0,270	-	-	-	-
K _{ho}	-	- '	∕ -	-	1,24	1,18	-	-
K _{hv}	-	-	6	-	0,87	0,90	-	-
lo, ly, MM	-	-	-4	-	0,433	0,485	0,497	0,536
I _{оф} , I _{уф} , мм	0,510	0,530	0,600	0,650	0,488	0,721	0,553	0,587
M	ı	-	Ī	Ĉ	1,05	0,74	1,08	1,11
K_{HO}, K_{Hy}	ı	-	ı	+/	0,887	0,673	0,895	0,913
a _o , a _y , %	•	-	•	-	10,3	8,0	9,5	4,2
а _{оср} , а _{уср} , %					8,8		7,5	
a ' _{ocp} , a ' _{ycp} , %				4				
a" _{ocp} , a" _{vcp} , %	9,2			7,7		70.	-	
Поверхностная плотность, г/м ²	300				296			

Из таблицы 1 видно, что для ткани данного строения сумма коэффициентов, определяющих высоты волн изгиба нитей основы и утка K_{ho} и K_{hy} не равна двум. Это объясняется тем, что короткие перекрытия стягивают длинные, и на этих участках нарушается однослойное строение ткани.

Коэффициент наполнения ткани волокнистым материалом по основе на участках с короткими перекрытиями в 1,32 раза превышает аналогичный коэффициент на длинных настилах, а по утку коэффициенты наполнения незначительно отличаются друг от друга.

Одним из основных параметров, расчёт которого производится при проектировании ткани по заданной поверхностной плотности, является уработка основных и уточных нитей, значение которой зависит от точности определения фактических расстояний между нитями.

Фактические расстояния между центрами нитей одной системы в местах пересечения их нитями противоположной системы, найденные по фотографиям срезов, значительно отличаются от теоретических. Поэтому в формулу для расчёта $I_{\text{оф}}$ и $I_{\text{уф}}$ предложено ввести коэффициент M, после чего она примет вид:

92 Витебск 2009

$$l_{o\phi(y\phi)} = \frac{l_{o(y)} \cdot M_{o(y)}}{K_{HO(HV)}}.$$
 (1)

Значения коэффициентов для различных участков ткани даны в таблице 1, они введены в соответствующие формулы для расчёта уработки основных и уточных нитей на этих участках ткани, по значениям которых высчитывалась средняя уработка основы и утка. Общий вид формул для расчёта уработки основных и

$$a_{o} = 100 \cdot \left[\frac{t_{o} \left(K_{c} \cdot \tau_{o} + \tau_{y} \right) \cdot \left(\sqrt{(4 - K^{2}_{hy}) \cdot M_{o}^{2} + K_{ho}^{2} \cdot K^{2}_{HY}} - M_{o} \cdot \sqrt{4 - K^{2}_{hy}} \right)}{t_{o} \left(K_{c} \cdot \tau_{o} + \tau_{y} \right) \cdot \sqrt{(4 - K^{2}_{hy}) \cdot M_{o}^{2} + K_{ho}^{2} \cdot K^{2}_{HY}} + 2 \cdot \left(R_{y} - t_{o} \right) \cdot \tau_{y}} \right],$$
 (2)

уточных нитей:
$$a_o = 100 \cdot \left[\frac{t_o \left(K_d \cdot \tau_o + \tau_y \right) \cdot \left(\sqrt{ \left(4 - K^2_{hy} \right) \cdot M_o^2 + K_{ho}^2 \cdot K^2_{HY}} - M_o \cdot \sqrt{4 - K^2_{hy}} \right)}{t_o \left(K_d \cdot \tau_o + \tau_y \right) \cdot \sqrt{ \left(4 - K^2_{hy} \right) \cdot M_o^2 + K_{ho}^2 \cdot K^2_{HY}} + 2 \cdot \left(R_y - t_o \right) \cdot \tau_y} \right], \qquad (2)$$

$$a_y = 100 \cdot \left[\frac{t_y \left(K_d \cdot \tau_o + \tau_y \right) \cdot \left(\sqrt{ \left(4 - K^2_{ho} \right) \cdot M_y^2 + K_{hy}^2 \cdot K^2_{HO}} - M_y \cdot \sqrt{4 - K^2_{ho}} \right)}{t_y \left(K_d \cdot \tau_o + \tau_y \right) \cdot \sqrt{ \left(4 - K^2_{ho} \right) \cdot M_y^2 + K_{hy}^2 \cdot K^2_{HO}} + 2 \cdot \left(R_o - t_y \right) \cdot K_d \cdot \tau_o} \right], \qquad (3)$$

$$\text{где } t_o, \ t_y - \text{число пересечений основой нитей утка и утком нитей основы в пределах раппорта переплетения, соответственно;}$$

$$K_d - \text{коэффициент соотношения диаметров основных и уточных нитей;}$$

где $t_{o},\ t_{v}$ – число пересечений основой нитей утка и утком нитей основы в

К_d – коэффициент соотношения диаметров основных и уточных нитей;

 ${\sf M}_{\sf o},\ {\sf M}_{\sf v}$ – коэффициенты, учитывающие фактическое расстояние между нитями основы и утка в местах их пересечения нитями утка и основы, соответственно.

Средние значения уработок, найденные по формулам (a_{ocd} , a_{vcd}) и полученные путём замеров по фотографиям (а"оср, а"уср) и по методу распрямления нитей, вынутых из ткани (a'_{ocp} , a'_{ycp}), отличаются друг от друга на 0,1÷4,0 %.

С использованием найденных в работе значений основных параметров строения спроектирована полульняная костюмная ткань в продольную полоску по заданной поверхностной плотности. Отклонение расчётной поверхностной плотности готовой ткани от заданной составило 1,5 %, что вполне допустимо в практике проектирования.

Список использованной литературы

- 1. Мартынова, А. А. Строение и проектирование тканей / А. А. Мартынова, Г. Л. Слостина, Н. А. Власова. – Москва : РИО МГТА, 1999. – 434 с.
- методы в экспериментальных 2. Литовский, С. М. Статистические исследованиях : учебное пособие / С. М. Литовский. – Витебск : ВГТУ, 1996. – 63 c.

SUMMARY

The development of costume fabrics with the longitudinal strip, developed with use of linen yarns on base weft-pile interlacing are considered in this article. The fabrics structure on its various sites for the purpose of calculation of factors of filling of a fabric by a fibrous material in the warp and weft was investigated. Taking into account the correction factors the shrinkage formulas of the both thread systems were expressed. 300CHTO,

УДК 685.34.017

МЕТОДИКА ИСПЫТАНИЯ СИСТЕМ МАТЕРИАЛОВ ВЕРХА ОБУВИ ПРИ МНОГОКРАТНОМ РАСТЯЖЕНИИ

Р.Н. Томашева, В.Е. Горбачик

В процессе носки верх обуви в области плюснефалангового сочленения подвергается циклическим деформациям растяжения. Под действием этих деформаций в материалах заготовки происходит постепенное накапливание

93 Вестник УО ВПУ