ИССЛЕДОВАНИЕ СВОЙСТВ КЛЕЕВЫХ СОЕДИНЕНИЙ ОБУВНЫХ МАТЕРИАЛОВ ПРИ ИСПОЛЬЗОВАНИИ КОМБИНИРОВАННОГО ПОЛИУРЕТАНОВОГО КЛЕЯ

К.ж.н., доц. Солтовец Г. Н., к.т.н., доц. Смелков В. К., к.т.н., доц. Потапова К. Ф.

(BITY)

Исследования, проведенные на кафедрах химин и технологии изделий из кожи ВГТУ, установили возможность растворения отходов полнуретана и использования получених растворов в качестве основного компонента комбинированного полнуретанового клея [1].

Целью настоящей работы была разработка рецептуры комбинированного клея и технологии его применения, а также исследование свойств клеевых соединений различных обувных материалов с использованием указанного клея.

Исследование проводилось в лабораторных условиях на стандартных образцах [2], а затем получениме результаты были проверены в производственных условиях — на обувной фабрике г. Витебска.

В качестве скленваемых материалов использовались: материалы верха обуви выростох, СК-8 и барекс; материалы инза - кожволов, пористая резина, полиуретан, ТЭП.

При разработке рецептуры клея на основе растворов отходов полнуретана было исследовано влияние содержания полнизоцианата и каучука десмоколла-400 в клеевой композиции на прочность клеевых соединений. Было установлено, что вводить в состав комбинированного клея полнизоцианат нецелесообразно. Наибольная прочность скленвания была получена при добавлении в раствор отходов полнуретана - 20 % раствора десмоколла-400. Все дальнейшие исследования и производственная апробация проводились с применением комбинированного клея слепуршего состава:

- 33 %-ный раствор отходов полнуретана в диметилформамиде 80 масс. частей,
- 20 %-вый раствор десмоколла-400 в этилацетате 20 масс. частей.

В работе установлено, что комбинированиий клей данного состава может быть использован в течение 3-х суток без снижения своей клеяжей способности.

Предлагаемый комбинированный клей позволяет уменьшить себестонмость обуви без снижения прочности крепления подощь и обеспечить безотходное и экологически чистое использование обувных полиуретанов.

Подготовка образцов и их скленвание проводилось в соответствии с типовой технологией.

При исследовании кинетики сушки клеевых плёнок на повержности кожволона в виростка установлены рациональные режимы сушки:

V=1m/c; t=35°C; t=20-25 MEH.

V=1m/c; t=20±2°C; T=45-60 MHH.

В работе была всследована прочность скленвання при использовании комбинированного клея следующих систем материалов:

выросток + кожволон (чёрный);

- барекс + кожволон (чёрный);
- барекс + кожволон (коричвевий);
- СК-8 + кожволон (чёрный);
- СК-8 + кожволон (коричневый);
- выросток + ТЭП;
- СК-8 + пористая резина;
- виросток + полиуретан.

Намазка образцов выростка, барекса в ТЭП проводелась двужкратная; образцов резины, кожволона в СК-8 - однократная. Сужка после первой намазки- 10-15 мин., после второй - 50 мин. в нормальных условиях.

При определении прочности клеевых соединений приведениях выше систем материалов в ряде случаев наблюдалось когознонное разрушение по одному из скленваемых материалов. Спедовательно, в этих случаях прочность скленвания оказывается больше когознонной прочности самих материалов. Получение результаты эксперимента приведены в таблице.

Система склеиваемых материалов	Прочность на рассланвание, Р _{ср.} , Н/см
виросток + кожволон (чёрний)	>41,2
выросток + кожволон (коричневый)	>31,6
барекс + кожволон (чёрный)	>23,5
барекс + кожволон (коричневый)	>23,5
СК-8 + кожволон (коричневий)	>39,0
СК-8 + кожволон чёрный)	>39,0
Выросток + ТЭП	>59,7
Выросток + пористая резина	20,7
СК-8 + пористая резина	12,8
Выросток + полнуретан	>40,5

Таблица 1.

Анализируя получение дание можно заключить, что предлагаемий в данкой работе комбинированный полиуретановый клей может быть использован для клеевого крепления низа обуви из таких материалов, как ТЭП, полиуретан и кожволон. Верх обуви в названных случаях может быть из натуральной или синтетеческой кожи, например, из барекса или из СК-8. Для приведенных систем достигалась высокая прочность склеивания - от 23,5 до 59,7 Н/см, что отвечает требованиям ГОСТ [3].

Сравнятельно назкая прочность получена для систем материалов: пористая резниа + СК-8; пористая резниа + выросток. Для указанных систем не следует рекомендовать комбинированный клей.

Наряду с прочностью в работе исследовались термо- и водостойкость клеевых соединений, полученимх с использованием комбинированного клея. Исследование проводилось на образцах кожволова и выростка, а также ТЭП и выростка.

Уставовлево, что после выдержки склеек в воде прочность склеивания снизилась на 18 % по сравнению с прочностью контрольных склеек. (Допускается снижение прочности на 20-25 %).

При определении термостойкости прочность снизилась на 16 % по сравнению с контрольной. Следовательно, комбинированный клей обеспечивает получение прочных, термо- и водостойких клеевых соединений.

Получениме в работе результаты были проверены в продзводственимх условиях на обувной фабрике г. Витебска в цехах N4 и N5. В качестве материала верха

обужи применялась натуральная кожа, в качестве материала низа - кожволом и ТЭП. Использовался комбинированный клей приведенной выже рецептуры.

Полученные результаты прочности крепления подощь сопоставляли с нормативной прочностью [3]. При использовании комбинированного клея достигнута прочность:

- женская обувь (подожва кожволон) Р=38,6 45,5 Н/см;
- малодетская обувь (подоява ТЭП) Р=72 88 Н/см.

Таким образом, при использовании в качестве матернала подожв кожволона получена прочность на уровне требований ГОСТ, а в случае применения подожв из ТЭП достигнута прочность, значительно превыжающая нормативную (в 2 - 2,5 раза).

Следовательно, разработанный авторами клей на основе растворов отходов полнуретана можно использовать в обувной промишленности для прикленвання подожв из кожволона, ТЭП или полнуретана к верху обуви из натуральной кожи или СК.

Применение предлагаемого клея позволит снизить расход дорогостоящих импортных материалов (десмохоллов и полиизоцианатанов) и одновременно решить проблему утилизации отходов обувных полиуретанов.

Литература:

- 1. Солтовец Г. Н., Платонов А. П., Смелков В. К. Методы утилизации отходов полиуретана. Сб. Научных трудов ВТИЛПа. Вышейшая вкола, Минск, 1994, с. 186.
- 2. ГОСТ 22307-77. Клен обувние. Испитанне прочности клеевых соединений на сприт и рассланвание, с.10.
- 3. ГОСТ 21463-87. Обувь. Норми прочности, с. 7.