- 4. Chadwick P. Progress in solid mechanics. Thermoelasticity. The dinamical theory. Amsterdam: Pub. Co. Vol. 1. 1961.
- 5. Кундас С.П. Компьютерное моделирование процессов термической обработки сталей: монография. Мн.: Бестпринт, 2005. 313 с.
- 6. Варгафтик Н.Б. Теплофи.зические свойства веществ. / Справочник. М.: Госэнергоиздат, 1956. 340 с

PICTS СПЕКТРОСКОПИЯ ГЛУБОКОУРОВНЕВЫХ ЦЕНТРОВ МОНОКРИСТАЛЛА СЕГНЕТОЭЛЕКТРИКА - ПОЛУПРОВОДНИКА TIGaSe₂.

Одринский А.П.¹, Grivickas V.², Mammadov T.G.³.

¹ Институт Технической Акустики НАНБ, Витебск, Беларусь <u>odra@mail333.com</u>
² Institute of Materials Science and Applied Research, Vilnius University, Vilnius,

Lithuania

3 Institute of Physics Azerbaijan National Academy of Sciences, Baku, Azerbaijan Дефекты кристаллической структуры слоистых сегнетоэлектриков — полупроводников вызывают интерес как с точки зрения практического применения данных материалов, так и с точки зрения фундаментальной науки, где многие аспекты теории фазовых переходов связывают с электрической активностью дефектов [1]. Применение распространенных методов исследования электрически активных дефек-тов на данных объектах сталкивается с проблемой неконтролируемой электрической активности внутренних полей, обусловленных доменной структурой кристалла. В этих условиях эффективно применение фотоэлектрической релаксационной спектроскопии (PICTS [2]) - разновидности нестационарной спектроскопии, использующей фотовозбуждение полупроводника. В настоящей работе представлены результаты PICTS исследования собственных дефектов монокристалла TIGaSe₂.

Исследовались выращенные методом Бриджмена—Стокбаргера специально не легированные монокристаллы TlGaSe₂ из разных технологических партий. Кристаллы обладали проводимостью p- типа при удельном сопротивлении L1 ρ $=2\cdot10^6$ Ом см, L3 $-1.3\cdot10^6$ Ом см, Az1 $-3\cdot10^6$ Ом см, Az3 $-2.8\cdot10^6$ Ом см. Образцы типично имели размеры 2х4х0.3 мм. Омические контакты формировались пайкой индием на торцевых поверхностях образца. Геометрия протекания тока - вдоль слоев кристалла. Качество контактов оценивали по вольтамперной характеристике, которая была линейна при комнатной температуре. Световое возбуждение с hv < Eg перпендикулярно поверхности кристалла - плоскости скола, и соответствовало плотности потока фотонов на поверхности образца $\sim 10^{14}\,\mathrm{cm}^{-2}\,\mathrm{c}^{-1}$. Измерительная установка и методика измерений описаны в [3]. При регистрации релаксации фототока проводилось поточечное накопление и усреднение кинетики сигнала (64 реализации), содержащей 2000 отсчетов, расположенных через фиксированный интервал времени $\Delta t = 6.3 \cdot 10^{-5} \, \text{с.}$ Регистрация проводилась в процессе нагрева образца со скоростью ~ 2 К/мин в диапазоне температур 78-330 К, с шагом 1 К. Релаксации фотоотклика анализиро-валась по методикам DLTS [4].

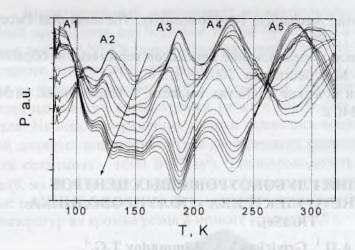


Рис.1 PICTS спектры образца L1, времена релаксации соответствуют 1,5 — 15 мс. Спектры нормированы по высоте максимального пика.

На рис.1 приведен типичный набор спектров, с хорошо различимыми пиками, отмеченными на рисунке как A1-A5. В спектрах остальных образцов при соответствующих температурах также наблюдаются аналогичные пики. Смеще-ние температурного положения пика в наборе спектров обнаруживает наличие перезарядки дефектов, регистрируя зави-симость от температуры скорости переза-рядки (см. рис.2). В таблице представле-

ны значения энергии термо-активации перезарядки — E_a и эффективного сечения захвата - σ_t совместно областью C температур реги-страции перезарядки - ΔT , полученные в результате DLTS анализа зависимости от температуры релаксации фотоотклика при возбужде-нии с hv = 1,8 эВ. Отметим, что область ΔT для A2 включает температуру фазо-вого перехода из пара - в несоразмерную сегнетоэлектрическую фазу 107 К, а для А1 из несоразмерной в соразмерную сегнетофазу 120 К [5,6].

Параметры дефектов					
		L1	L3	Az1	Az3
A1	T, K	100-115	81-106	93-117	91-115
7.	E_a , eV	0,12	0,10	0,11	0,13
STORY	σ_t , cm ²	3,8 10 ⁻¹⁸	3,9 10 ⁻¹⁷	9,4 10 ⁻¹⁸	9,6 10 ⁻¹⁷
A2	<i>T</i> , K	120-130	122-142	121-132	122-138
4) 4	E_a , eV	0,36	0,3	0,32	0,27
1011111	σ_t , cm ²	6,9 10 ⁻⁰⁹	1,2 10-11	1,6 10 ⁻¹⁰	3,86 10 ⁻¹³
A3	T, K	152-166	152-181	142-168	173-196
	E_a , eV	0,30	0,33	0,26	0,42
	σ_t , cm ²	4,5 10 ⁻¹⁴	2,4 10 ⁻¹³	5,8 10 ⁻¹⁵	$9,2\ 10^{-12}$
A4	<i>T</i> , K	208-243	214-239	210-243	209-234
A N	E_{a} , eV	0,41	0,48	0,42	0,44
ursko.	σ_t , cm ²	3,4 10 ⁻¹⁴	4,0 10 ⁻¹³	$2,7 \cdot 10^{-14}$	1,6 10 ⁻¹³
A5	T, K	305-327	307-328	301-325	293-324
	Ea, eV	0,71	0,58	0,72	0,68
	σ_t , cm ²	1,3 10 ⁻¹²	9,1 10 ⁻¹⁴	9,0 10 ⁻¹³	7,8 10E ⁻¹³

Как можно заметить из таблицы наиболее стабильным параметром является область температур регистрации перезарядки, что послужило основанием для предварительного сопоставления пиков перезарядке идентичных дефектов в наших образцах. В тоже время наиболее критична величина σ_t . Для пика A2 оценка в рамках DLTS анализа эффективного сечения захвата по данным, регистрировавшимся на разных образцах, изменяется на четыре порядка. На образцах L1, L3 и Az1 σ_t имеет сверх «гигантскую» величину, согласно оценке эффективного сечения захвата центра, притягивающего носители заряда $\sim 10^{-12}-10^{-15}$ см² [7]. Надежным критерием идентификации дефекта в различных образцах принято считать совпадение графиков Аррени-уса. На рис.2 для A4 точки группируются в некоторой относительно компактной области графика Аррениуса. Для A2 увеличение области приблизительно соответствует изменению масштаба $\sim \Delta T/T$. Для систематизации результатов мы применили

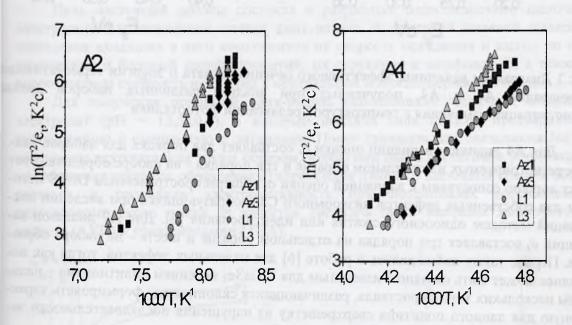


Рис.2 Зависимость от температуры скорости перезарядки дефекта A2 и A4 с учетом T^2 коррекции.

методику предложенную в работе [6]. Мы использовали для анализа данные, полученные в различных условиях эксперимента. Варьировалось приложенное к образцу напряжение, фотовозбуждение hv и начальные условия эксперимента - предварительный прогрев образца и повторение регистрации данных без промежуточного прогрева. Результаты анализа представлены на рис.3. Хорошее соответствие пар значений (E_a , $\lg(\sigma_l)$) линейной зависимости свидетельствует об идентичности дефектов, регистрируемых на образцах [6].

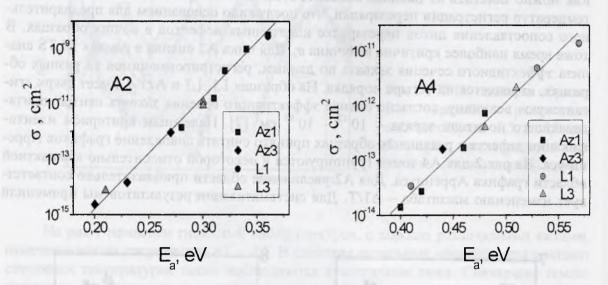


Рис.3 Диаграммы величины эффективного сечения захвата и энергии термоактивации перезарядки A2 и A4, полученных при анализе различных наборов данных регистрирации изменения с температурой релаксации фотоотклика

Для А4 диапазон вариации оценки σ_t составляет два порядка для наборов данных регистрируемых на отдельном образце и три порядка - на наборе образцов. Этот факт хорошо сопоставим с вариацией оценки σ_t общераспространенным DLTS методом для собственных дефектов низкоомного CdS, образующихся при введении дислокаций методом одноосного сжатия или идентирования [6]. Для А2 диапазон вариации σ_t составляет три порядка на отдельном образце и шесть - на наборе образцов. Первое также наблюдалось в работе [6] для отдельных дефектов, тогда как последнее может быть связано с известным для $TlGaSe_2$ явлением политипизма — наличием нескольких типов кристалла, различающихся склонностью формировать характерную для данного политипа сверхрешетку из нарушения последовательности чередования кристаллических слоев.

Литература

- 1 Фридкин В.М. Сегнетоэлектрики полупроводники/ М.: Наука. 1976. 408 с.
- 2. Ch. Hurter, M. Boilou, A. Mitonneau, D. Bois/ Appl. Phys. Lett. 32 (1978), p. 821.
- 3. И.А. Давыдов, А.П. Одринский. РЖ: Электроника 11, 4 (1990).
- 4. D.V. Lang, J. Appl. Phys. 45, 7, -p.3023-3032 (1974).
- 5. DF McMorrow, R A Cowley, P D Hatton and J Banys/ J. Phys.: Condens. Matter 2 3699-3712 (1990).
- 6. С.Б. Вахрушев, Б.Е. Квятковский, Н.М. Окунев, К.Р. Аллахвердиев. Препринт ФТИ им. А.Ф.Иоффе № 886 Л. (1984).
- 7. *Милнс А.* Примеси с глубокими уровнями в полупроводниках/ М.: Мир, 1977. 562 с.
- 8. А.А.Истратов, О.Ф.Вывенко, ФТП 29, 4, с.654-664 (1995).