ДИНАМИЧЕСКИЕ ЭФФЕКТЫ ПРИ СКОЛЬЖЕНИИ ДИСЛОКАЦИЙ В НАНОМАТЕРИАЛАХ

Малашенко В. В., Малашенко Т. И.

Донецкий физико-технический институт им. А.А. Галкина НАН Украины, Донецк, Украина, <u>malashenko@kinetic.ac.donetsk.ua</u> Донецкий национальный технический университет, Донецк, Украина

Свободные поверхности кристалла, а также границы раздела в поликристаллах способны оказывать существенное, а иногда и определяющее влияние на различные свойства кристаллов, в том числе механические, и в частности, на динамическое скольжение дислокаций [1]. Особенно возрастает роль поверхности и межзеренных границ в наноматериалах, исследование которых является одним из наиболее перспективных и бурно развивающихся направлений современной физики [2, 3].

При движении дислокаций в приповерхностных слоях кристалла возрастает роль так называемых сил изображения, действующих на дислокацию со стороны свободной поверхности или межкристаллитной границы. В большинстве работ по исследованию влияния сил изображения на поведение дислокаций, выполненных в последние годы, методами компьютерного моделирования решалась задача о выходе дислокации на поверхность либо анализировался процесс роста кристалла [4].

Поверхность, являясь структурным дефектом, может и сама содержать различные дефекты, например, точечные, и влиять не только на движение дислокаций, но и на их взаимодействие с точечными дефектами, содержащимися как на поверхности, так и в объеме кристалла. Однако влияние сил изображения на динамическое торможение дислокации точечными дефектами ранее не изучалось.

Пусть бесконечная краевая дислокация движется под действием постоянного внешнего напряжения σ_0 в положительном направлении оси ОХ с постоянной скоростью *v* параллельно поверхности кристалла, совпадающей с плоскостью XOZ. Линия дислокации параллельна оси OZ, а ее вектор Бюргерса параллелен оси OX. Точкам кристалла отвечают значения $y \le 0$. Плоскость скольжения дислокации совпадает с плоскостью y = -L, а положение дислокации определяется функцией

$$X(y = -L, z, t) = vt + w(y = -L, z, t).$$
(1)

Здесь функция w(y = -L, z, t) является случайной величиной, описывающей колебания элементов краевой дислокации в плоскости скольжения относительно невозмущенной дислокационной линии.

Уравнение движения дислокации имеет следующий вид

$$m\left\{\frac{\partial X^2}{\partial t^2} - c^2 \frac{\partial^2 X}{\partial z^2}\right\} = b\left[\sigma_0 + \sigma_{xy}^i(vt + w; z) + \sigma_{xy}^s(vt + w; z)\right] - B\frac{\partial X}{\partial t}.$$
 (2)

Здесь σ_{xy}^{s} – компонента тензора напряжений, создаваемых поверхностными точечными дефектами на линии дислокации, σ_{xy}^{i} – силы изображения, действующие на дислокацию благодаря наличию свободной поверхности.

Силу динамического торможения дислокации поверхностными точечными дефектами вычислим во втором порядке теории возмущений

$$F_{s} = \frac{n_{s}b^{2}}{4\pi m} \int dq_{x}dq_{z} |q_{x}| \cdot |\sigma_{xy}(q_{x}, q_{z}, y)|^{2} \,\delta(q_{x}^{2}v^{2} - \omega^{2}(q_{z})) \,. \tag{3}$$

Здесь n_s – поверхностная концентрация точечных дефектов, $\delta(q_x^2 v^2 - \omega^2(q_z))$ – это δ-функция Дирака, $\omega(q_z)$ – спектр дислокационных колебаний, который имеет вид

$$\omega^2 = c^2 q_z^2 + \Delta_s^2; \qquad \Delta_s = \frac{b}{L} \sqrt{\frac{D}{2m}} \approx \frac{c}{L}$$
(4)

Выполним численные оценки. Возьмем типичные значения $c = 3 \cdot 10^3 \text{ м/c}$, $b = 3 \cdot 10^{-10} \text{ м}$. Тогда для $L \approx 10b$ получим $\Delta_s \approx 10^{12} \text{ c}^{-1}$, для $L \approx 100b$ оценки дают $\Delta_s \approx 10^{11} \text{ c}^{-1}$. Выполняя интегрирование, получим выражение для силы торможения дислокации поверхностными дефектами

$$F_{s} = \frac{n_{s}b^{2}\mu^{2}\varepsilon^{2}R^{6}}{mc} \left(\frac{\Delta_{s}^{9}L^{3}}{v^{11}}\right)^{\frac{1}{2}} \exp\left(-\frac{2L\Delta_{s}}{v}\right)$$
(5)

Значение предэкспоненциального множителя не превышает силу электронного торможения, т.е. само по себе весьма мало, а экспонента делает эту величину пренебрежимо малой. Следовательно, можно говорить о блокировке механизма торможения дислокации, связанного с возбуждением дислокационных колебаний поверхностными примесями. Таким образом, свободная поверхность не создает силу, действующую на дислокацию в плоскости скольжения, но она препятствует возникновению дислокационных колебаний в этой плоскости.

Рассмотрим теперь случай, когда краевая дислокация движется параллельно поверхности кристалла, содержащего точечные дефекты, случайным образом распределенные в его объеме.

Динамическое взаимодействие распределенных в объеме кристалла дефектов с дислокацией в зависимости от скорости дислокационного скольжения может иметь как коллективный характер, так и характер независимых столкновений [5–9]. Точечные дефекты тоже оказывают влияние на дислокационный спектр: они создают щель в области коллективного взаимодействия с дислокацией, то есть в области, где дислокация за время взаимодействия с дефектом успевает "почувствовать" влияние многих других дефектов. Эта щель, согласно [9], описывается выражением

$$\Delta_d = \frac{c}{b} \left(n_{0V} \varepsilon^2 \right)^{1/3} = \frac{c}{l} ; \qquad b \left(n_{0V} \varepsilon^2 \right)^{-1/3} = l \approx l_d \tag{6}$$

Здесь n_0 – безразмерная концентрация точечных дефектов, $n_0 = nR^3$,

l_d – среднее расстояние между дефектами в кристалле. В области независимых столкновений щель в спектре дислокационных колебаний не возникает.

Таким образом, вид колебательного спектра определяется конкуренцией взаимодействия дислокации с поверхностью и с точечными дефектами. В зависимости от их соотношения сила динамического торможения дислокации точечными дефектами может характеризоваться различной зависимостью от параметров задачи (концентрации точечных дефектов, удаленности дислокации от свободной поверхности, упругих модулей кристалла и так далее). Указанные выше взаимодействия дают аддитивный вклад в формирование спектральной щели

$$\Delta^2 = \Delta_s^2 + \Delta_d^2 \tag{7}$$

В этом случае главный вклад в формирование щели вносят силы изображения. Граница этой области определяется неравенствами

$$(bc/v) \gg L; \qquad l \gg L.$$
 (8)

Поскольку влияние поверхности является доминирующим в данной области, сила торможения зависит от расстояния до этой поверхности

$$F_d = \mu b n_{0V} \varepsilon^2 \frac{v}{c} \left(\frac{L}{b}\right)^2 \tag{9}$$

Чтобы оценить степень влияния поверхности на движение дислокаций, возьмем отношение сил торможения F_{d2} в приповерхностном слое, где влияние поверхности доминирует, и F_{d1} в слое, где оно не существенно

$$\frac{F_{d2}}{F_{d1}} = \left(\frac{L}{l}\right)^2 \tag{10}$$

Выполним численные оценки. Для значений $n_{0V} \approx 10^{-4}$, $\epsilon \approx 10^{-1}$, $L \approx 10b$ получим $(F_{d2}/F_{d1}) \approx 10^{-2}$, то есть наличие поверхности приводит к уменьшению силы торможения на два порядка. Таким образом, наличие поверхности значительно снижает влияние точечных дефектов на скольжение дислокаций в приповерхностной области.

Оценим толщину приповерхностного слоя, в пределах которого поверхность оказывает существенное влияние на динамическое взаимодействие дислокаций с точечными дефектами. Для типичных значений $c = 3 \cdot 10^3 \text{ м/c}$, $b = 3 \cdot 10^{-10} \text{ м}$, $n_{0V} \approx 10^{-2} \div 10^{-6}$, $v \approx 10^{-2} \div 10^{-1} c$ получим, что толщина оцениваемого слоя может составлять от нескольких нанометров до нескольких десятков нанометров.

Таким образом, можно сделать вывод, что силы изображения полностью блокируют влияние поверхностных точечных дефектов и значительно снижают влияние объемно распределенных точечных дефектов на динамическое скольжение дислокаций в наноматериалах, т.е. облегчают пластическое деформирование мягких металлов, имеющих нанометровые размеры и содержащих примеси высокой концентрации.

Список литературы

- Kodambaka S., S. V. Khare, W. Swich, K. Ohmori, I. Petrov, J. E. Greene. // Nature. 2004. Vol. 429. – P. 49–52.
- 2. Головин Ю. И. // ФТТ. 2008. Т. 50, № 12. С. 2113–2142.
- 3. Малыгин Г. А. // ФТТ. 2007. Т. 49, № 6. С. 961–982.
- 4. Liu X. H., F. M. Ross, K. W. Schwarz. // Phys. Rev. Lett. 2000. Vol. 85, № 19. P. 4088-4091.
- 5. Малашенко В. В. // Кристаллография. 2009. Т. 54, № 2. С. 312–315.
- 6. Малашенко В. В. // ФТТ. 2009. Т. 51, № 4. С. 703–705.
- 7. Малашенко В. В. // ЖТФ. 2009. Т. 79, № 4. С. 146–149.
- 8. Malashenko V. V. // Modern Phys. Lett. B. 2009. Vol. 23, № 16. P. 2041–2047.
- 9. Malashenko V. V. // Physica B: Phys. Cond. Mat. 2009. Vol. 404, № 21. P. 3890–3893.

ОСОБЕННОСТИ ДИНАМИЧЕСКОГО ПОВЕДЕНИЯ КРАЕВЫХ ДИСЛОКАЦИЙ В КРИСТАЛЛАХ В УСЛОВИЯХ ВЫСОКОГО ГИДРОСТАТИЧЕСКОГО ДАВЛЕНИЯ

Малашенко В.В.

Донецкий физико-технический институт им. А.А. Галкина НАН Украины, Донецк, Украина, <u>malashenko@kinetic.ac.donetsk.ua</u> Донецкий национальный технический университет, Донецк, Украина

Движение дислокаций и их взаимодействие друг с другом, с другими дефектами, а также с фононами, электронами, магнонами, оказывает огромное влияние на механические свойства реального кристалла [1-3]. Важным и пока что недостаточно изученным аспектом динамики дислокаций является их взаимодействие с точечными дефектами кристаллической решетки (вакансии, примеси, междоузельные атомы), которые