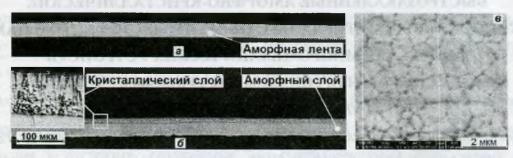
БЫСТРОЗАКАЛЁННЫЕ АМОРФНО-КРИСТАЛЛИЧЕСКИЕ ФУНКЦИОНАЛЬНЫЕ МАТЕРИАЛЫ С ОБРАТИМЫМ ЭФФЕКТОМ ПАМЯТИ ФОРМЫ ДЛЯ МИКРОМЕХАНИЧЕСКИХ УСТРОЙСТВ

Ситников Н.Н.¹, Шеляков А.В.², Ризаханов Р.Н.¹


¹ГНЦ ФГУП «Центр Келдыша», Москва, Россия

² Национальный исследовательский ядерный университет «МИФИ», Москва, Россия sitnikov_nikolay@mail.ru

В последнее время показана эффективность использования сплавов, обладающих эффектом памяти формы (ЭПФ), для создания микроустройств в различных областях техники, в частности, в приборостроении, медицине, энергетике, космических технологиях, робототехнике. Постоянно возрастающий спрос на сверхпортативную и высокоэффективную технику стимулирует разработку малогабаритных, дешёвых и быстродействующих устройств на основе таких сплавов. Для миниатюризации устройств, создания микро- и, возможно, наноустройств становится актуальным получение тонкомерных материалов с эффектом обратимой памяти формы (ЭОПФ). Поэтому целью данной работы было исследование структуры и свойств слоистого аморфно-кристаллического композита с ЭОПФ на основе сплава системы TiNi-TiCu для использования в нано- и микромеханике.

В качестве объекта исследования был выбран сплав квазибинарной системы TiNi-TiCu с 25 ат. % Cu, полученный методом сверхбыстрой закалки из расплава (метод спиннингования расплава). Предварительно слитки сплава были приготовлены из сверхчистых металлов с шестикратной переплавкой в дуговой печи в атмосфере аргона. Полученные заготовки расплавлялись в кварцевом тигле в атмосфере гелия и экструдировались через узкое сопло в тигле на поверхность вращающегося медного диска. В результате этого процесса, происходящего со скоростью охлаждения расплава $10^5 \div 10^6$ K/c, получали тонкие ленты толщиной $30 \div 50$ мкм и шириной от 1 до 2 мм в аморфном и аморфно-кристаллическом состояниях.

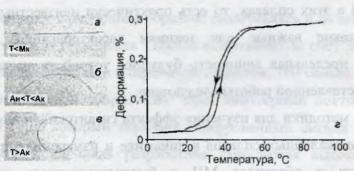

В зависимости от скорости охлаждения расплава в процессе спиннингования формируется аморфное или аморфно-кристаллическое состояние ленты. Типичные поперечные сечения быстрозакаленных лент показаны на рисунке 1. При скоростях охлаждения расплава около 10^6 К/с лента аморфизуется (рис. 1, a). Более низкие скорости охлаждения расплава (до 10^5 К/с) приводят к образованию кристаллического слоя толщиной $2 \div 10$ мкм на неконтактной поверхности ленты (рис. 1, δ).

Рисунок 1. Изображение типичного поперечного сечения быстрозакаленных лент, полученных при различных скоростях охлаждения: (a) -10^6 K/c; (б) $-5\cdot10^5$ K/c и её неконтактная поверхность после травления (в)

Для исследований аморфно-кристаллического композита была выбрана лента общей толщиной около 40 мкм и толщиной кристаллического слоя 10 мкм. Рентгеноструктурный анализ подтвердил, что при комнатной температуре кристаллический слой на неконтактной (свободной) поверхности ленты является кристаллическим, а все наблюдаемые дифракционные пики на дифрактограмме относятся к орторомбической решетке типа В19 и находятся в хорошем соответствии с ранее полученными другими исследователями результатами исследования мартенситного состояния в сплавах Ti-Ni-Cu [1]. В то же время на дифрактограмме контактной стороны ленты характерные пики отсутствуют, что свидетельствует об аморфном состоянии этого слоя. Таким образом, было подтверждено, что полученная при скорости охлаждения 5·10⁵ К/с быстрозакаленная лента представляет собой слоистый аморфно-кристаллический композит. Оптические и растровые электронномикроскопические исследования свободной поверхности и поперечного сечения аморфно-кристаллического композита после полировки и последующего травления показали, что кристаллический слой имеет столбчатую структуру с характерным поперечным размером кристаллов 0.5-1 мкм (рисунок 3, 6), а также выявили резкую границу между аморфным и кристаллическим слоями, у которой не наблюдается отличия химического состава сплава в объеме ленты и в поверхностном слое. Были выполнены циклы нагрева и охлаждения в интервале от 20 до 100 °C со скоростью 10 °С/мин в дифференциальном сканирующем калориметре (ДСК). В исходном образце при нагреве и охлаждении наблюдаются характерные пики поглощения и выделения тепла, сопровождающие мартенситные превращения, в области температур 31÷44 °C. Температуры начала и конца прямого и обратного мартенситных превращений (МП) имеют следующие значения: $M_H=38.9$; $M_K=29.4$; $A_H=33.5$; $A_K=43.1$ °C. Энергии превращений составляют 2,3 и 2,1 Дж/г при прямом и обратном МП, соответственно.

Исследование термомеханических характеристик аморфно-кристаллического композита проводилось посредством термоциклирования образца в интервале МП. В исходном состоянии при комнатной температуре образец имеет прямолинейную форму (рис. 2, а). При нагреве выше температуры Ан в кристаллическом слое происходит обратное МП, в результате чего образец начинает изгибаться (рис. 2, б), принимая форму, близкую к кольцу при температуре выше A_{κ} (рис. 2, θ). Охлаждение образца до комнатной температуры приводит к его возврату в исходное прямолинейное состояние [2]. Таким образом, в быстрозакаленных аморфно-кристаллических лентах из сплава **TiNiCu** реализуется ЭОПФ термообработок. без каких-либо дополнительных Характерная температурная зависимость изгибной деформации образца приведена на рисунке 2. Измеренные значения критических температур формоизменения аморфнокристаллического композита составляют: $M_H = 41.7$; $M_K = 29.8$; $A_H = 33.5$; $A_K = 43.0$ °C.

Рисунок 2. Температурная зависимость формоизменения быстрозакаленного аморфно-кристаллического композита

Сравнение полученных значений температур формовосстановления с критическими температурами МП, полученными методом ДСК, подтверждают, что формоизменение ленты происходит за счет протекания МП в кристаллическом слое и реализации ЭПФ [3].

Способность разработанного аморфно-кристаллического композита к обратимой изгибной деформации была использована для создания миниатюрных функциональных элементов на изгиб с ЭОПФ для микромеханических устройств различного назначения.

Работа выполнена при поддержке гранта РФФИ № 14-08-00947 А.

- 1. Матвеева Н.М., Пушин В.Г., Шеляков А.В. и др. ФММ. 1997. Т.83. №6. С. 82-92.
- 2. Shelyakov A.V., Sitnikov N.N., Menushenkov A.P et al, J. of Alloys and Compounds. 2013. V. 577. S. 1. P. S251-S254.
- 3. Shelyakov A., Sitnikov N., Saakyan S. et al, Materials Science Forum. 2013. V. 738-739 (2013). P. 352-356.