УДК 677.21.022

ИМИТАЦИОННАЯ МОДЕЛЬ УСТРОЙСТВА ФОРМИРОВАНИЯ ПАКОВОК ПОЛУФАБРИКАТА

Плеханов А.Ф.,проф., Комисарук Л.В., асп.

Московский государственный университет дизайна и технологии, г. Москва, Российская Федерация

Аналитические исследования и оптимизация технологических параметров лентоукладчиков позволяют определять оптимальные заправочные параметры технологического оборудования с учетом геометрических размеров паковок, линейной плотности и физико-механических показателей ленты, структурного состава полуфабриката и способов укладки ленты в тазы.

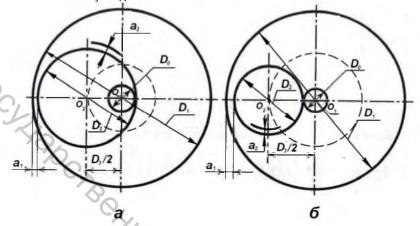


Рисунок 1 – Типы укладки ленты в таз

За основу исследований была принята имитационная модель зацентрового (а) и доцентрового (б) типов укладки ленты в таз для определения условий максимального использования объёма таза при наиболее компактном ее формировании. Тип укладки ленты определяется соотношением параметров диаметров окружностей D_2 и D_3 . При $D_3 < D_2/2$ формируется зацентровой тип укладки ленты в таз, а при $D_3 > D_2/2$ — доцентровой тип. При этом внутри таза остается незаполненное пространство в форме полого цилиндра с диаметром D_0 . Принято считать, что максимальная вместимость таза достигается при соотношении параметров $D_0 = 0,25$ - D_1 . В результате проведенных нами исследований установлено, что это соотношение зависит также от параметров D_2 , D_3 , D_3 , D_4 0 и линейной плотности ленты D_4 1, а также коэффициента распрямленности волокон в ленте D_4 1.

Повышение плотности укладки ленты достигается оптимальным подбором частот вращения таза вокруг оси O_1 и верхней тарелки лентоукладчика относительно оси O_2 . Установлено, что выбор технологических параметров диаметра таза и тарелки лентоукладчика зависит от параметров D_1 , D_2 , D_3 , D_4 , линейной плотности ленты D_4 , а также коэффициента распрямленности волокон в ленте D_4 .

В результате проведенных работ уточнены формулы для расчета параметров наладки лентоукладчика при зацентровом и доцентровом типах укладки ленты в таз без учета зазора между лентой и стенкой таза a_1 . Получены формулы для расчета геометрической ширины ленты s_n при ее укладке в таз и условного диаметра ленты d_n , а также массы ленты в тазах, в зависимости от параметров таза — высоты H и диаметра D_1 , а так же технологического перехода.

УДК 677.021, 677. 022, 677. 21. 017

ВОЗМОЖНОСТЬ РЕГУЛИРОВАНИЯ ФРИКЦИОННЫХ СВОЙСТВ НИТЕЙ

Посканная Е.С., м.н.с., Сакевич В.Н., доц.

Витебский государственный технологический университет, г. Витебск, Республика Беларусь

Текстильная переработка нитей в ткань сопряжена с изрядным количеством препятствий, и результативность применения того или иного вида переработки определяется совокупностью свойств перерабатываемых нитей и пряжи.

Во избежание нерационального использования сырья и исключение снижения качества готовых изделий возникает необходимость преобразования поверхностных свойств волокон. Нацеленным на преобразование данных свойств является эмульсирование. Цель эмульсирования заключается в

ВИТЕБСК 2014 75