УДК 687.02

СОВЕРШЕНСТВОВАНИЕ ПРОЦЕССА ПЛАНИРОВАНИЯ ТЕХНИЧЕСКОЙ ПОДГОТОВКИ ШВЕЙНОГО ПРОИЗВОДСТВА

С.В. Яковлева

Новосибирский технологический институт Московского государственного университета дизайна и технологии (филиал), г. Новосибирск, Российская Федерация

Для эффективного функционирования предприятий существенное значение имеет конкурентная среда. Конкурентность обеспечивается устойчивым спросом на выпускаемый ассортимент и поиском новых видов продукции.

В связи с этим перед предприятиями встает проблема оперативного реагирования на запросы рынка сбыта продукции и потребности клиентов. Безликого массового потребителя сменяет индивидуальный заказчик. Данные обстоятельства нарушают организационную стабильность предприятий, нацеливают на поиск и формирование организационных структур, позволяющих перестроить их деятельность.

Внедрение гибкой производственной системы позволяет так организовать производство, чтобы на имеющемся оборудовании обрабатывать группы изделий широкой номенклатуры любыми партиями в любое время. Концепция гибкого производства требует нового подхода к проектированию технологических процессов.

Повышение гибкости организационных форм швейного производства в условиях интенсификации обновления продукции основывается на усовершенствованной системе технической подготовки производства, обеспечивающей создание новых изделий в минимально короткие сроки осуществляемой главным образом в экспериментальном цехе (ЭЦ) предприятия и базирующийся на применении групповой технологии. Сущность группового технологического процесса состоит в том, что для всей полученной посредством классификации группы объектов производства разрабатывается совмещенный технологический процесс, подбирается оборудование и оснастка для обеспечения изготовления всех объектов группы без перестройки процесса.

Основным исходным документом, в котором отражены осваиваемые модели с учетом их трудоемкости, сроки начала и окончания работ является квартальный план-график.

В общем виде задача календарного планирования призвана дать исчерпывающие и обоснованные ответы на три главных вопроса: указать, какие предметы труда, на каких рабочих местах и в какие моменты времени должны быть изготовлены, чтобы достичь наилучших результатов деятельности по принятому критерию оптимальности, выбор которого зависит от многих производственно-экономических факторов. В качестве критерия оптимальности при формировании план-графика рассматривается минимизация длительности производственного цикла, зависящая от очередности запуска моделей изделии в ЭЦ.

Для группирования объектов проектирования и обеспечения преемственности моделей при переходе от изготовления одной модели к изготовлению другой в ЭЦ производится упорядочивание коллекции моделей, утвержденных к производству – технической подготовке.

Под упорядоченной коллекцией моделей понимается коллекция, сформированная на основе матричного метода по «горизонталям» и «вертикалям», по принципу различия конструктивных основ швейных изделий, определяющих «горизонталь» коллекции. На базе каждой из этих основ разрабатываются конструктивно-унифицированные ряды моделей, или «вертикали».

В качестве основного различия конструктивных основ (классификационного признака) швейных изделий принят покрой рукава.

Витебск 2009 **299**

Каждый конструктивно-унифицированный ряд включает в себя модификации базовой основы модели, отличающиеся друг от друга базовыми технологическими узлами, которые характеризуются количеством и видом членений сборочных единиц, силуэтом, видом воротника, застежки, карманов, способом соединения подкладки. В «вертикалях» обеспечивается взаимозаменяемость, преемственность и повторяемость деталей и узлов, максимальная унификация. Модели, входящие в «вертикаль», последовательно заменяют друг друга при обработке (согласно установленной оптимальной очередности их запуска).

Расчет очередности запуска моделей проводился по библиотеке работ подготовки моделей к запуску в производство с использованием матричного метода, поскольку он в наибольшей степени позволяет приблизить решение к оптимальному.

После ввода исходных данных, представленных в виде матрицы норм времени t_{ij} операций j по моделям i рассчитываются дополнительные параметры P_{i1} и P_{i2} для каждой из них: при четном числе операций S в матрице исходных данных:

$$P_{i1} = \sum_{j=1}^{\frac{s}{2}} t_{ij} \quad _{\mathbf{H}} \quad P_{i2} = \sum_{j=\frac{s}{2}+1}^{s} t_{ij} \quad ; \tag{1}$$

при нечетном числе операций S в матрице исходных данных:

$$P_{i1} = \sum_{j=1}^{\frac{s+1}{2}} t_{ij} \quad _{\text{M}} \quad P_{i2} = \sum_{j=\frac{s+1}{2}}^{s} t_{ij} ; \qquad (2)$$

Далее определяется разность I_i значений дополнительных параметров P_{iI} и P_{i2} по каждой модели изделия:

$$I_i = P_{i2} - P_{i1}. (3)$$

Для выбора варианта очередности, обеспечивающего построение оптимального календарного плана-графика с минимальной совокупной длительностью производственного цикла, осуществляется упорядочивание моделей изделия по четырем правилам:

$$d_{i\atop i=1,2,3,\dots,k} = \begin{cases} 1.d_{i} \in D_{1}, I_{i} \geq 0, min \rightarrow max\,P_{i1}; \\ 2.d_{i} \in D_{2}, I_{i} < 0, max \rightarrow min\,P_{i2}; \end{cases}$$

где d_i – модель, принадлежащая множеству моделей изделий D_k ; D_l – модели изделий, принадлежащие множеству моделей изделий D_k и относящиеся к левой половине матрицы исходных данных P_{il} ; D_2 – модели изделий, принадлежащие множеству моделей изделий D_k BOOCHION и относящиеся к правой половине матрицы исходных данных P_{i2} .

2 правило:

$$d_i = \{d_i \in D_k, max \rightarrow min I_i .\}$$

3 правило:

$$\begin{aligned} d_{i} \\ i=1,2,3,...,k \end{aligned} = \begin{cases} 1.d_{i} \in D_{1}, I_{i} > 0, & min \rightarrow max \ P_{i1}; \\ 2.d_{i} \in D_{2}, I_{i} = 0, & min \rightarrow max \ P_{i1}; \\ 3.d_{i} \in D_{3}, I_{i} < 0, & max \rightarrow min \ P_{i2}; \\ D_{1,2,3} \in D_{k}. \end{aligned}$$

Третье правило аналогично первому, но предусматривает упорядочение изделий в очереди в пределах надмножеств изделий сначала со значениями $\lambda_i > 0$, затем $\lambda_i = 0$ и далее λ_i < 0.

300 Витебск 2009 4 правило:

$$D_{1,2,3} \in D_k \begin{cases} i = 1, \max P_{i2} \\ i = 2, \min P_{i1} \end{cases} (npu \ I_i > 0; I_i \ge 0; I_i \le 0; I_i < 0).$$

Далее выбирается очередность запуска моделей изделий с минимальной длительностью производственного цикла.

Расчет технико-экономических показателей ТПП показал, что оптимальная очередность запуска моделей изделий позволяет повысить рентабельность активов швейного предприян... УДК 687.03.677.074 ятия за счет сокращения длительности производственного цикла.

УСТАНОВЛЕНИЕ КОМПЛЕКСА ОПРЕДЕЛЯЮЩИХ ТЕХНОЛОГИЧЕСКИХ ПОКАЗАТЕЛЕЙ КАЧЕСТВА ОДЁЖНЫХ ТКАНЕЙ И ОЦЕНКА ИХ ЗНАЧИМОСТИ

Н.И.Щербакова

ГОУ ВПО «Российский заочный институт текстильной и легкой промышленности»(филиал), г. Омск, Российская Федерация

Одёжные ткани, в качестве объекта исследования, выбраны как наиболее часто используемые материалы для изготовления бытовой одежды. Необходимо уточнить, что в группу одёжных тканей, согласно межотраслевой классификации материалов (классификация ЦНИИШП), входят все платьево-блузочные, сорочечные, костюмные, пальтовые, плащевые и курточные ткани любого волокнистого состава и вида отделки.

Технологическими показателями называют группу свойств материалов, определяющих пригодность материала для дальнейшей переработки.[1] Данная группа показателей насчитывает значительное количество качественных и количественных характеристик. Разработана схема причинно-следственных связей, устанавливающая влияние технологических свойств тканей на процессы проектирования и производства одежды [2].

Анализ связей между отдельными показателями качества и этапами проектируемого технологического процесса швейного производства выявил 20 значимых показателей, влияющих на технологию переработки тканей. Такое большое количество показателей затрудняет общую оценку технологичности материала и требует сужения до меньшего числа, выявление группы показателей, условно обозначенных как «базовые». Для этого необходимо систематизировать полученные данные и проанализировать их по частоте встречаемости на различных этапах швейного производства и по их влиянию на качество изготавливаемого изделия. Анализ проводился с привлечением специалистов действующих швейных предприятий г. Омска.

В результате выявлено 11 показателей, которые в большей степени учитываются при проектировании технологических процессов швейного производства. К ним относятся: усадка при ВТО, формоустойчивость ткани, раздвигаемость нитей в ткани и в швах, адгезионная способность материала, осыпаемость нитей, прорубаемость ткани иглой, растяжимость, подвижность структуры, тангенциальное сопротивление материалов (к.т.с.), драпируемость, температура тепло и термостойкости материалов. [2]

Следующим этапом является выбор наиболее значимых технологических показателей. В квалиметрии – научной области о количественных методах измерения качества продукции, применяют различные методы для выбора определяющих показателей качества, но наиболее подходящим для данной ситуации можно считать экспертный метод.

301 Витебск 2009