Исследования показывают, что для снижения влияния окружных перетоков рабочей жидкости в относительно длинном щелевом уплотнении на жесткостные свойства гидростатической силы целесообразно щелевое уплотнение выполнять с кольцевой канавкой, причем ее желательно располагать посередине щели. В этом случае существенно повышаются жесткостные характеристики уплотнения, что, как известно, приводит к увеличению критических частот ротора. С другой стороны, наличие в щели кольцевой канавки уменьшает дестабилизирующее влияние гидростатической составляющей силы, обусловленной перекосом вала во втулке.

Литература:

- 1. Беда А.И. Анализ гидростатической силы в щелевом уплотнении произвольной длины. Вестник Сумского государственного университета. Серия Технические науки, Сумы, 2012, №2. –С. 50-59.
- 2. Беда А.И. Анализ демпфирующей и циркуляционной сил в щелевом уплотнении произвольной длины. Вестник Сумского государственного университета. Серия Технические науки, Сумы, 2013, №1. –С. 25-34.

УДК 621.671

МОДЕЛИРОВАНИЕ ГИДРОДИНАМИЧЕСКИХ ПРОЦЕССОВ В ЩЕЛЕВЫХ УПЛОТНЕНИЯХ ЦЕНТРОБЕЖНЫХ НАСОСОВ

БЕЛОУС Д.А., студент, БЕДА И.Н., доцент

Сумский государственный университет, г. Сумы, Украина

Ключевые слова: щелевые уплотнения, ротор, гидродинамическая сила.

Реферат: в работе рассмотрено моделирование гидродинамических процессов в щелевых уплотнениях центробежных насосов. Представлена зависимость гидростатической силы от относительного эксцентриситета (смещения вала) с использованием полиномов Лежандра.

Развитие научно-технического прогресса на современном этапе невозможно без реализации высоких показателей качества, надежности, эффективности технических процессов и оборудования. Так, комплекс нефте- и газодобычи, гидро- и теплоэнергетика, коммунальное городское хозяйство широко используют центробежные насосы, которые обеспечивают перекачивание жидкостей и газов, сообщая им при этом необходимые технологические параметры. Современные промышленные технологии требуют от этих машин повышения показателей давления и подачи для разных сред, что приводит к необходимости усовершенствования конструкционных и технологических характеристик насосов.

Анализ гидродинамической системы «ротор — щелевые уплотнения» позволяет определить, оценить и спрогнозировать вибрационное состояние центробежного насоса.

Существуют методы оценки гидродинамических характеристик моделей роторов (метод начальных параметров и метод динамической жесткости) [1], которые позволяют выполнить расчет динамических характеристик. Однако в них не учитывается информация о гидродинамических процессах в щелевых уплотнениях проточной части насоса, которые в значительной мере влияют на надежность вибрационного состояния системы.

В роботе [2] представлена модель, которая описывает движение жидкости в щелевом уплотнении с эксцентрично смещенным валом без учета инерционных элементов. Она описывается системой уравнений (1) с граничными условиями (2):

ВИТЕБСК 2016 40

$$\begin{cases}
\frac{\partial p(\overline{z},\phi)}{\partial \phi} = -\frac{\lambda r}{2h_0} \frac{\rho w_0}{2} u(\overline{z},\phi), \\
\frac{\partial p(\overline{z},\phi)}{\partial \overline{z}} = -\frac{\lambda l}{2h} \frac{\rho w^2(\overline{z},\phi)}{2}, \\
\frac{\partial \left(w(\overline{z},\phi)h(\overline{z},\phi)\right)}{\partial \overline{z}} + \frac{lh_0}{r} \frac{\partial u(\overline{z},\phi)}{\partial \phi} = 0
\end{cases} \tag{1}$$

$$\begin{cases} p(0,\varphi) = p_{10} - \xi_1 \cdot \frac{\rho \cdot w^2(0,\varphi)}{2}, \\ p(1,\varphi) = p_{20} - \xi_2 \cdot \frac{\rho \cdot w^2(1,\varphi)}{2}, \end{cases}$$
 (2)

B4786CK44 где $p(\bar{z}, \varphi)$ – распределение давления в щели; $u(\bar{z}, \varphi)$ – окружная скорость жидкости, обусловленная полем давления; $w(\bar{z}, \varphi)$ – осевая скорость жидкости; w_0 – осевая скорость жидкости в концентрическом канале; $h(\varphi)$ – величина радиального зазора; λ – коэффициент гидравлического трения; l – длина щели; r – радиус вала; R – радиус втулки; $h_0 = R - r$ – средний радиальный зазор.

После выполнения математических преобразований системы (1) и учета граничных условий было получено квазилинейное уравнение эллиптического типа:

$$\frac{(1 - \varepsilon \cdot \cos \varphi)^{2}}{2 \cdot l_{r}^{2}} \cdot \frac{\partial^{2} \overline{p}}{\partial z^{2}} + \sqrt{\frac{-(1 - \varepsilon \cdot \cos \varphi) \cdot \xi_{0}}{\xi_{l}}} \cdot \frac{\partial \overline{p}}{\partial z}} \cdot \frac{\partial^{2} \overline{p}}{\partial \varphi^{2}} = 0$$
(3)

Данное соотношение описывает состояние динамической системы при условиях:

$$\begin{cases}
\bar{p}(0,\varphi) = \bar{p}_1 + \xi_1 \cdot \frac{1 - \varepsilon \cdot \cos \varphi}{\xi_1} \cdot \frac{\partial \bar{p}(0,\varphi)}{\partial \bar{z}}, \\
\bar{p}(1,\varphi) = \bar{p}_2 + \xi_2 \cdot \frac{1 - \varepsilon \cdot \cos \varphi}{\xi_1} \cdot \frac{\partial \bar{p}(1,\varphi)}{\partial \bar{z}}, \\
p(\bar{z},0) = p(\bar{z},2\pi),
\end{cases} (4)$$

Гидростатическая сила, обусловленная радиальным смещением вала, представлена в виде:

$$F(\varepsilon) = -r \cdot l \cdot \int_{0}^{2\pi} \int_{0}^{1} p(z, \varphi) \cdot \cos \varphi dz d\varphi$$
 (5)

Для решения уравнения (3) использовался метод сеток с применением метода последовательных приближений. При каждой последующей итерации было найдено значение давления жидкости в узлах сетки при заданном относительном эксцентриситете. Итерационный процесс завершили при условии, что относительное изменение давления в каждом узле не превышает заданной точности.

После интерполяции узловых значений двумерным кубическим сплайном с помощью функций Mathcad получили дискретное распределение давления в щели (таблица 1).

Таблица 1

	Значения относительного эксцентриситета ε										
	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	0,95	
$F(\varepsilon)$	48.8 9	96.6 7	142.18	184.19	221.39	252.32	275.43	289.19	292.21	289.46	

41 УО «ВГТУ» Для получения аналитической зависимости гидростатической силы от параметров смещения вала в щелевом уплотнении зависимость рассмотрена в виде:

$$F(\varepsilon) = -k_c(0) \cdot h_0 \cdot \varepsilon \cdot \alpha(\varepsilon) \tag{6}$$

где $\alpha(\varepsilon) = 1 + \alpha_1 \varepsilon + \alpha_2 \varepsilon^2 + ... + \alpha_n \varepsilon^n$ - безразмерный коэффициент нелинейности.

Зависимость этого коэффициента для некоторых типоразмеров щелевых уплотнений представлена на рисунке 1. Видно, что с ростом эксцентриситета величина силы уменьшается.

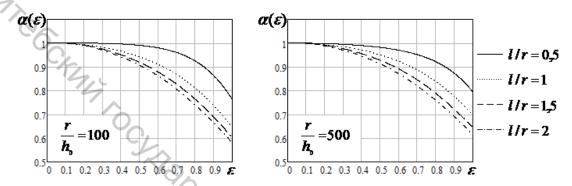


Рисунок 1 – Зависимость коэффициента нелинейности силы от относительного коэффициента ε

Зависимость (6) описана многочленом с использованием полиномов Лежандра в виде:

$$F(\varepsilon) = a_0 + a_1 P_1(\varepsilon) + a_2 P_2(\varepsilon) + a_3 P_3(\varepsilon) + a_4 P_4(\varepsilon) + a_5 P_5(\varepsilon) + \dots$$
 (7)

где
$$a_m = \frac{1}{2}(2m+1)\int\limits_{-1}^{+1}f(x)P_m(x)dx$$
 — коэффициенты разложения; m - порядок многочлена $P_m(x)$

- полином Лежандра.

Неизвестные коэффициенты разложения были вычислены с помощью программных средств Mathcad для многочленов вида (7) до девятого порядка включительно (пример расчета для многочлена восьмого порядка представлен таблице 2).

Таблица 2

a_0	a_1	a_2	a_3	a_4	a_5	a_6	a_7	a_8
0,0588	489,2335	7,965	-198,327	4,4621	-16,867	-20,872	6,944	11,11

Проведенный анализ нелинейности гидростатической силы в щели со спиральным движением рабочей жидкости показал, что гидростатическая сила имеет мягкую характеристику жесткости.

При условии, когда гидростатическая сила меняет направление и становится центрирующей, это может привести к потере устойчивого движения ротора.

Литература:

- 1. Марцинковский В.А. Основы динамики роторов / В.А. Марцинковский. Сумы: Изд-во Сумского государственного университета, 2009.-307 с.
- 2. Беда І.М. Рух рідини в кільцевих каналах шпарових ущільнень / І.М. Беда, О.І. Беда // Вісник Сумського державного університету. Серія «Технічні науки», 2011. № 4. С. 26-33.

ВИТЕБСК 2016 42