

Рисунок 2 – Ведущий и ведомый шкивы, построенные библиотекой

Кроме твердотельных моделей, библиотека позволяет также получать рабочие чертежи шкивов и фрагмент сечения ремня с размерами.

Список использованных источников

1. Курсовое проектирование деталей машин : справ. пособие. В 2 кн. Кн. 2 / А. В. Кузьмин [и др.]. – Минск : Высш. школа, 1982.

УДК 678.08

ТЕХНОЛОГИЯ И ОБОРУДОВАНИЕ ДЛЯ ПЕРЕРАБОТКИ ПОЛИМЕРСОДЕРЖАЩИХ ОТХОДОВ

С.В. Бровко, В.В. Пятов

Практически на всех предприятиях Республики Беларусь образуются различного рода полимерсодержащие отходы. Перед предприятиями стоят сложные задачи по вопросам нахождения пути избавления от данных видов отходов, так как в настоящее время все больше ужесточают ограничения на вывоз полимерных и полимерсодержащих отходов на свалки ТБО.

Отходы термопластичных пластмасс можно классифицировать следующим образом [1]:

• технологические отходы производства, образующиеся при синтезе и переработке пластмасс и составляющие от 5 до 35% (масс). По свойствам они мало

244 ВИТЕБСК 2009

отличаются от исходного сырья и могут повторно перерабатываться в смеси с исходным материалом;

- отходы общественного потребления, накапливающиеся на свалках в результате морального или физического износа полимерных деталей или изделий, в которых они использовались. Хотя они и представляют ценное вторичное сырье, но вследствие перемешивания с другими видами отходов их переработка в изделия затруднена;
- отходы производственного потребления, накапливающиеся в результате выхода из строя изделий из полимерных материалов, используемых в различных отраслях экономики. Эти отходы достаточно однородны и также могут быть повторно переработаны в изделия. К ним относятся детали машин, тара, отходы пленочных материалов сельскохозяйственного назначения и др. Значительная часть таких полимерсодержащих отходов это использованные упаковки [2].

С точки зрения жизненного цикла полимеров установлено, что наиболее короткий цикл принадлежит именно упаковочным материалам. Таким образом, использованные упаковки составляют основной объем материалов для рециклинговых технологий.

В настоящее время для утилизации и ликвидации отходов полимеров в промышленности применяют следующие основные направления:

- сжигание вместе с бытовыми отходами;
- пиролиз и получение жидкого и газообразного топлива;
- захоронение на полигонах и свалках;
- переработка отходов в полимерное сырье и повторное его использование для получения изделий.

Сжигание отходов пластмасс – наименее эффективный способ их удаления и обезвреживания, так как при этом полностью разрушается дорогостоящий полимер и другие компоненты пластика.

Весьма перспективна переработка отходов пластмасс пиролизом, но использование такой технологии целесообразно лишь в районах с ресурсами отходов полимеров не менее 465 тыс. т/год.

Захоронение отходов пластмасс – наименее целесообразный способ их удаления, так как наносит прямой ущерб окружающей среде и приводит к нерациональному использованию природных ресурсов. В отличие от сжигания захоронение отходов пластмасс не позволяет использовать потенциальные энергетические ресурсы, содержащиеся в полимерах.

Наиболее рациональный способ утилизации отходов пластмасс – это их повторное использование по прямому назначению. При этом не только снижаются нагрузки на окружающую среду, но и достигается ресурсосберегающий эффект от повторного вовлечения материальных ресурсов в производственный цикл.

Предлагаемая технология предназначена для переработки упаковочного полистирола и отходов нетканых материалов. Технология основана на получении полосы полуфабриката композиционного материала, где полимер является основным компонентом – связующим, а остальное – наполнитель. Схема технологической линии представлена на рисунке 1.

BUTE5CK 2009 245

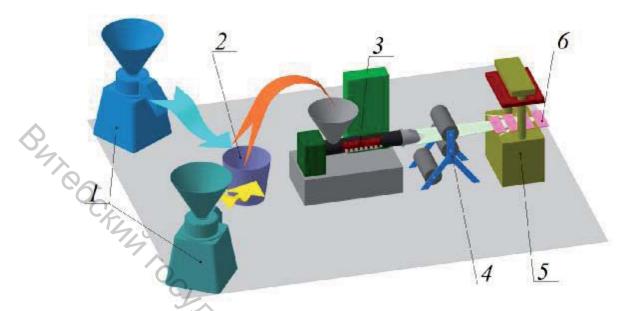


Рисунок 1 – Схема технологической линии: 1 – измельчители; 2 – смеситель; 3 – шнековый смеситель; 4 – прокатка; 5 – вырубка; 6 – готовое изделие

Первым этапом подготавливают исходный материал. На роторно-ножевых дробилках измельчают наполнитель и полимер. В смесителе 2 происходит подготовка композиции – смешение компонентов в определенном соотношении. Далее смесь загружается в шнековый смеситель, где она гомогенизируется и выдавливается в виде полосы через оформляющую головку на прокатные валки 4. На валках полосе придаются окончательные геометрические параметры и, при необходимости, рельеф поверхности. Затем из получаемой полосы происходит вырубка изделий.

Спиоск использованных источников

- 1. Бобович, Б. Б. Переработка отходов производства и потребления : справочное издание / Б. Б. Бобович. — Москва : Интермет Инжиниринг, 2000.
- 2. Шаповалов, В. М. Многокомпонентные полимерные системы на основе вторичных материалов / В. М. Шаповалов – Гомель: ИММС НАН Беларуси, LA LANDER CONTRACTOR 2003.

УДК 678.05

РАЗРАБОТКА УСТАНОВКИ ДЛЯ ИСПЫТАНИЯ ПОЛИМЕРНЫХ МАТЕРИАЛОВ НА ИСТИРАНИЕ

В.Ю. Новиков, К.С. Матвеев, А.К. Новиков

Для изделий из полимерных материалов их надежность и долговечность в большей степени определяются не только прочностными и деформационными характеристиками, но в значительной мере зависят от их износостойкости. Связано это с тем, что полимерные материалы широко используются в узлах трения, в зубчатых и ременных передачах, направляющих узлов и механизмов станков и т.д. Именно по этой причине испытания на трение и износ получают все большее распространение при определении эксплуатационных свойств полимеров.

ВИТЕБСК 2009 246