МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

Учреждение образования

«Витебский государственный технологический университет»

ТЕХНОЛОГИЧЕСКИЕ ПРОЦЕССЫ И АППАРАТЫ ОТРАСЛИ

Методические указания по выполнению расчетно-графических работ для студентов специальности 1-53 01 01 «Автоматизация технологических процессов и производств» специализации 1-53 01 01-05 «Автоматизация технологических процессов и производств» (легкая промышленность)

Технологические процессы и аппараты отрасли: методические указания по выполнению расчетно-графических работ для студентов специальности 1-53 01 01 «Автоматизация технологических процессов и производств» специализации 1-53 01 01-05 «Автоматизация технологических процессов и производств» (легкая промышленность).

Витебск, Министерство образования Республики Беларусь, УО «ВГТУ», 2017.

Составитель: ст. преп. Радкевич А. В.

Методические указания предназначены для студентов специальности 1-53 01 01 «Автоматизация технологических процессов и производств» специализации 1-53 01 01-05 «Автоматизация технологических процессов и производств» (легкая промышленность), изучающих курс «Технологические процессы и аппараты отрасли», даны методические указания по расчету электроприводов швейных машин и вырубочных прессов.

Одобрено кафедрой «Машины и аппараты легкой промышленности» УО «ВГТУ», протокол № 12 от 22.03.2017 г.

Рецензент: к.т.н., доц. Новиков Ю. В. Редактор: к.т.н., доц. Кириллов А. Г.

Рекомендовано к опубликованию редакционно-издательским советом УО «ВГТУ», протокол № 3 от 30 марта 2017 г.

Ответственный за выпуск: Данилова И. А.

Учреждение образования

«Витебский государственный технологический университет»

Подписано к печати 01.07.17. Формат 60x90 1/16. Уч.-изд. лист. 1.6. Печать ризографическая. Тираж 40 экз. Заказ № 221

Отпечатано на ризографе учреждения образования «Витебский государствен- ный технологический университет».

Свидетельство о государственной регистрации издателя, изготовителя, распространителя печатных изданий № 1/172 от 12 февраля 2014 г. 210035, г. Витебск, Московский пр., 72.

СОДЕРЖАНИЕ

Расчетно-графическая работа № 1. РАСЧЕТ ВРЕМЕНИ РАЗГОНА ЭЛЕКТРОПРИВОДА ШВЕЙНОЙ МАШИНЫ Расчетно-графическая работа № 2. РАСЧЕТ МАХОВИКА ЭЛЕКТРОПРИВОДА ВЫРУБОЧНОГО ПРЕССА Литература 26
ЭЛЕКТРОПРИВОДА ВЫРУБОЧНОГО ПРЕССА
ЭЛЕКТРОПРИВОДА ВЫРУБОЧНОГО ПРЕССА
ЭЛЕКТРОПРИВОДА ВЫРУБОЧНОГО ПРЕССА Литература 26
Литература 26
Yes
So.
94
44
4
Ly,
To the second se

Расчетно-графическая работа № 1. РАСЧЕТ ВРЕМЕНИ РАЗГОНА ЭЛЕКТРОПРИВОДА ШВЕЙНОЙ МАШИНЫ

1.1 Теоретическая часть

Основные параметры и механическая характеристика асинхронных электродвигателей

Перечислим основные параметры нерегулируемых асинхронных электродвигателей.

Синхронная частота вращения ротора n_o определяется из формулы

$$n_{\hat{i}} = \frac{60f}{p}$$
 об/мин,

где f – частота напряжения, подаваемого на обмотку статора, Γ ц;

р – число пар полюсов статора.

В таблице 1.1 приведены значения n_o для промышленной частоты f = 50 Гц и рекомендуемых чисел p.

Таблица 1.1

p	1	2	3	4	5
n_o	3000	1500	1000	750	600

Синхронная угловая скорость ротора определяется из формулы

$$\omega_i = \frac{\pi n_i}{30} = \frac{2\pi f}{p}. \tag{1.1}$$

Номинальная частота вращения n_{H} ротора — это такая частота, при которой коэффициент полезного действия электродвигателя максимален. n_{H} определяется из формулы

$$n_i = (1 - S_i) n_i$$
 об/мин,

где S_H – номинальное скольжение ротора (S_H = 0,08–0,13).

Номинальная угловая скорость вращения ротора $\omega_{\scriptscriptstyle H}$ определяется из формулы

$$\omega_i = \frac{\pi n_i}{30} \text{ рад/c.}$$

Номинальная мощность N_H электродвигателя соответствует режиму работы электродвигателя с максимальным коэффициентом полезного действия (указывается на щитке электродвигателя в кВт).

Номинальный момент $M_{\scriptscriptstyle H}$ на валу электродвигателя определяется по формуле

$$M_i = \frac{1000N_i}{\omega_i} \, \text{H} \cdot \text{M}.$$

В формуле N_{H} берется в кВт.

Критический коэффициент $\lambda_{\kappa p}$ определяется из формулы

$$\lambda_{\hat{e}\check{o}} = \frac{M_{\hat{e}\check{o}}}{M_i},$$

 $M_{\kappa p}$ – максимальный критический момент, развиваемый на валу электродвигателя.

Коэффициент пуска λ_n определяется из формулы

$$\lambda_{\ddot{i}} = \frac{\dot{I}_{\ddot{i}}}{M_{i}},$$

 M_n – момент, развиваемый на валу в момент пуска.

Зависимость текущего значения угловой скорости ω ротора от момента M_{∂} , приложенного к ротору, определяется [3] по приближенной формуле

$$\dot{I}_{\ddot{a}} = \frac{2M_{\dot{e}\dot{\delta}}}{\frac{S}{S_{\dot{e}\dot{\delta}}} + \frac{S_{\dot{e}\dot{\delta}}}{S}},$$
(1.2)

S – текущее скольжение ротора, определяемое по формуле где

$$S=1-\frac{\omega}{\omega_i}$$
;

 $S_{\kappa p}$ — критическое скольжение ротора, определяемое из формулы

$$S_{\hat{e}\delta} = S_i \left(\lambda_{\hat{e}\delta} + \sqrt{\lambda_{\hat{e}\delta}^2 - 1} \right), \tag{1.3}$$

полученной подстановкой в формулу (1.2) значений $M_{\it o} = M_{\it h}$ и $S = S_{\it h}$ с последующим решением квадратного уравнения относительно $\lambda_{\kappa D}$.

График зависимости ω от M_{δ} называется графиком механической характеристики. Вид графика приведен на рисунке 1.1. Отметим на графике четыре характерные точки, соответствующие различным режимам работы.

Точка 1 ($\omega = \omega_o$; $M_o = 0$) соответствует режиму холостого хода. HABOOCHIO,

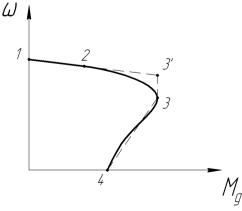


Рисунок 1.1 – График механической характеристики асинхронного электродвигателя

Точка 2 ($\omega = \omega_{H}$; $M_{d} = M_{H}$) соответствует номинальному режиму, при котором коэффициент полезного действия электродвигателя – максимальный.

Точка 3 ($\omega = \omega_{\kappa p}$; $M_{\partial} = M_{\kappa p}$) соответствует критическому режиму, при котором M_{∂} максимален.

Точка 4 ($\omega = 0$; $M_{\partial} = M_n$) соответствует режиму пуска.

Участок 1-2-3 характеристики соответствует устойчивой электродвигателя. Если приложить к валу электродвигателя момент, больший $M_{\kappa p}$, то он перейдет в неустойчивый режим работы на участке 3-4 и остановится.

Для упрощения расчетов электропривода уравнение механической характеристики (1.2) аппроксимируют отрезками прямых 1-3′, 3-3′, 3-4′.

Уравнение прямой 1–3′, проходящей через точки 1, 2, 3′, имеет вид

$$\frac{\omega - \omega_{\hat{i}}}{\omega_{i} - \omega_{\hat{i}}} = \frac{\dot{I}_{\ddot{a}}}{\dot{I}_{i}}.$$

Это уравнение преобразуется к виду

$$M_{\ddot{a}} = \dot{a} - b\omega \,, \tag{1.4}$$

a и b – постоянные коэффициенты, определяемые из формул где

$$\hat{a} = \frac{M_i \cdot \omega_i}{\omega_i - \omega_i},$$

$$b = \frac{M_i}{\omega_i - \omega_i}.$$
(1.5)

$$b = \frac{M_i}{\omega_i - \omega_i}. (1.6)$$

Уравнение прямой 4–3, проходящей через точки 4, 3, имеет вид

$$\frac{\omega - \omega_4}{\omega_3 - \omega_4} = \frac{\dot{I}_{\ddot{a}} - \dot{I}_{\ddot{i}}}{\dot{I}_{\dot{e}\dot{o}} - \dot{I}_{\ddot{i}}}.$$

 $\overline{\omega}_3 - \omega_4$ $I_{\hat{e}\hat{o}} - I_{\hat{i}}$ Подставляя в это уравнение $\omega_4 = 0$; $\omega_3 = \omega_{\kappa p}$; $M_{\hat{o}4} = M_n$; $M_{\hat{o}3} = M_{\kappa p}$, чим: $M_{\hat{a}} = e\omega + M_{\hat{i}} \,, \qquad (1.7)$ $e = \frac{M_{\hat{e}\hat{o}} - \hat{I}_{\hat{i}}}{\omega_{\hat{e}\hat{o}}} \,. \qquad (1.8)$ получим:

$$M_{\ddot{a}} = e\omega + M_{\ddot{i}} \,, \tag{1.7}$$

где

$$e = \frac{M_{\hat{e}\delta} - \dot{l}_{\hat{r}}}{\omega_{\hat{e}\delta}}.$$
 (1.8)

$$M_{\pi} = M_{\hat{e}\delta}. \tag{1.9}$$

На интервале $\omega_{\hat{e}\hat{o}} \leq \omega \leq \omega'_{\hat{e}\hat{o}}$, где

$$\omega_{\hat{e}\hat{\sigma}}' = \frac{a - M_{\hat{e}\hat{\sigma}}}{h}.$$
 (1.10)

Структура электропривода

Кинематическая схема типового электропривода швейных показана на рисунке 1.2. На схеме обозначены: 1 – вал электродвигателя с закрепленными на нем ротором 1а и маховиком 16; 2 – ведомый вал привода, соосный с валом электродвигателя, с закрепленными на нем диском 2а с фрикционными накладками и шкивом 2б клиноременной передачи; 3 – главный вал швейной машины 4. Управление приводом осуществляется с помощью педали 5 через систему звеньев 6-8. Ролик 7а рычага входит в паз подвижного корпуса 8, в котором закреплены вращающиеся опоры вала 2. Рычаг 7 удерживается в исходном положении пружиной 9. В исходном положении педаль 5 не нажата, пружина 9 через вертикальное плечо и ролик 7а рычага 7 удерживает корпус 8, вал 2 и диск 2а в крайнем правом положении, правая фрикционная накладка диска 2а прижата к неподвижному тормозному диску 10, вал 2 неподвижен, электродвигатель работает в режиме холостого хода.

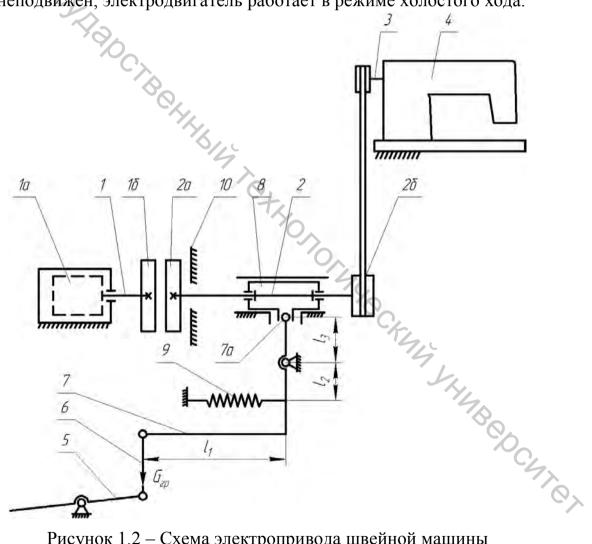


Рисунок 1.2 – Схема электропривода швейной машины

При нажатии на педаль 5 тяга 6 опускается, угловой рычаг 7, преодолевая действие пружины 9, поворачивается против часовой стрелки, верхнее плечо рычага перемещает корпус 8, вал 2 и диск 2а влево, в конце хода диск 2а левой фрикционной накладкой прижимается к маховику 16, в результате вращение от ротора двигателя передается валам 2 и 3.

При опускании педали 5 фрикционный диск 2а под действием пружины 9 перемещается вправо, в конце хода диск 2а правой фрикционной накладкой прижимается к тормозному диску 10, происходит торможение вала 2.

Определение времени разгона

На участке разгона привода следует выделить две фазы работы длительностей t_1 и t_2 (рис. 1.3). Фаза t_1 соответствует различным угловым скоростям дисков 16, 2а фрикционной муфты, происходит пробуксовка дисков. Фаза t_2 соответствует полному сцеплению дисков 16, 2а, пробуксовка отсутствует.

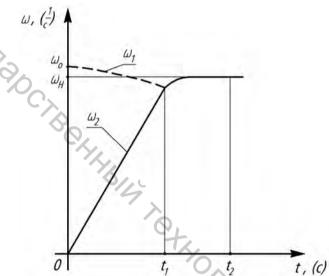


Рисунок 1.3 – График разгона электропривода

В фазе t_I привод следует рассматривать в виде двух систем звеньев: ведущей, включающей звено 1, и ведомой, включающей звенья 2, 3.

Уравнение движения звена 1 имеет вид

$$M_{\ddot{a}} - M_{\delta \delta} = I_1 \frac{d\omega_1}{dt}, \qquad (1.11)$$

где M_{∂} – момент, развиваемый электродвигателем;

 $M_{\phi p}$ – момент трения во фрикционной паре 16-2а;

 ω_I — угловая скорость вала электродвигателя.

Момент M_{∂} может быть представлен в виде уравнения (1.4), в котором $\omega = \omega_I$. Момент трения $M_{\partial p}$ определится из формулы

$$M_{\hat{o}\hat{o}} = \frac{QfR_{\hat{o}\hat{o}}}{K} \,,$$

где Q- осевое усилие прижатия фрикционных дисков 1б и 2а; f- коэффициент трения;

 R_{mp} – радиус трения;

K – коэффициент динамичности нагрузки.

Ведомая система звеньев приводится к звену 2. Уравнение движения звена приведения 2 имеет вид

$$M_{\delta\delta} - M_{\tilde{n}\tilde{r}\delta} = I_{\tilde{r}\delta}' \frac{d\omega_2}{dt} + \frac{\omega_2^2}{2} \cdot \frac{dI_{\tilde{r}\delta}'}{d\varphi_2}, \qquad (1.12)$$

где M_{cnp} – момент силы P_c , приведенный к звену 1; $I'_{i\delta}$ – сумма масс и моментов инерции звеньев 1, 2, 3, приведенных к звену 1, $I'_{i\delta} = I_{i\delta} - I_I$;

 ϕ_2, ω_2 – угловая координата и угловая скорость звена 2.

В типовом приводе (рис. 1.2) действует момент M_{C3} , приведенный к валу 3. Приведенный к звену 2 момент определится из соотношения

$$M_{c\bar{t}\,\dot{o}2} = \frac{M_{C3}}{U_{2-3}},$$

$$U_{2-3} = \frac{\omega_2}{\omega_3}$$
(1.13)

$$U_{2-3} = \frac{\omega_2}{\omega_3}$$

где ω_2 – угловая скорость вала 2; ω_3 – угловая скорость вала 3.

В большинстве приводов машин легкой промышленности (швейных, обувных) величина $I'_{i\delta}$ изменяется незначительно, поэтому допустимо для инженерных расчетов принять $I'_{i\check{o}}$ приближенно-постоянным:

$$I'_{i\delta} = \frac{I'_{i\delta max} + I'_{i\delta min}}{2}, \qquad (1.14)$$

 $I'_{\it i\delta max}$, $I'_{\it i\delta min}$ — максимальное и минимальное значение $I'_{\it i\delta}$.

С учетом (1.14) уравнение (1.12) принимает вид

$$M_{\delta\delta} - M_{\tilde{n}\tilde{t}\delta} = I'_{\tilde{t}\delta} \frac{d\omega_2}{dt}.$$
 (1.15)

Для определения t_1 нужно совместно решить уравнения (1.11) и (1.15), т. е. найти такие решения, при которых $\omega_1 = \omega_2$. Решим сначала (1.11) и (1.15) относительно ω_1 и ω_2 . Из уравнения (1.11) с учетом (1.4) получим

$$dt = \frac{I_1 d\omega_1}{c - b\omega_1},$$

где $c = a - M_{\hat{o}\hat{o}}$.

Интегрируя последнее уравнение, получим

$$\int_{0}^{t} dt = I_{1} \int_{\omega_{0}}^{\omega_{1}} \frac{d\omega_{1}}{c - b\omega_{1}},$$

$$t = \frac{I_{1}}{b} ln \frac{c - b\omega_{0}}{c - b\omega_{1}},$$

$$e^{\frac{bt}{I_{I}}} = \frac{c - b\omega_{0}}{c - b\omega_{1}},$$

$$\omega_{1} = e^{-\frac{bt}{I_{I}}} \left(\omega_{0} - \frac{c}{b}\right) + \frac{c}{b}.$$
(1.16)

 $\omega_{
m l}=e^{\frac{1}{I_{
m l}}}$ $\omega_{
m l}$ Интегрируя уравнение (1.15), получим

$$\int_{0}^{\omega_{2}} d\omega_{2} = \frac{M_{\delta\delta} - M_{\tilde{n}\tilde{i}\delta}}{I'_{\tilde{i}\delta}} \int_{0}^{t} dt,$$

$$\omega_{2} = \frac{M_{\delta\delta} - M_{\tilde{n}\tilde{i}\delta}}{I'_{\tilde{i}\delta}} \cdot t. \tag{1.17}$$

Приравняв правые части (1.16) и (1.17), получим

$$e^{-\frac{bt}{I_I}} \left(\omega_0 - \frac{c}{b} \right) + \frac{c}{b} - \frac{\dot{I}}{b} - \frac{\dot{I}}{I_{i\delta}} \cdot t = 0.$$
 (1.18)

Трансцендентное уравнение (1.18) может быть решено на ЭВМ численным методом. Решив это уравнение, получим $t = t_1$ и $\omega_2 = \omega_{2,1}$, где $\omega_{2,1}$ – угловая скорость звена 2 к моменту окончания первой фазы разгона.

Во второй фазе разгона t_2 проскальзывание между дисками 2а и 16 отсутствует, привод может быть представлен в виде одной системы, приведенной к звену 1. Уравнение звена приведения имеет вид

$$M_{\ddot{a}} - M_{\tilde{n}\tilde{i}\delta} = I_{\tilde{i}\delta} \frac{d\omega_2}{dt}, \tag{1.19}$$

где $M_{\ddot{a}} = \grave{a} - b\omega_2, \ M_{\tilde{n}\tilde{i}\tilde{o}} \approx const.$

С учетом последних выражений уравнение (1.19) запишем в виде

$$\int_{0}^{t_2} dt = I_{i\delta} \int_{\omega_{2,1}}^{\omega_{2,\delta}} \frac{d\omega_2}{c' - b\omega_2},$$

где ω_{2y} – угловая скорость звена 2 в установившемся режиме работы привода, $\vec{n} = a - M_{\tilde{n}\tilde{t}\tilde{o}}$.

В результате определим t_2 :

$$t_2 = \frac{I_{i\delta}}{b} ln \frac{c' - b\omega_{2,1}}{c' - b\omega_{2,\delta}}.$$
 (1.20)

Следует отметить, что в реальных приводах часто $t_2 << t_1$. Это связано с тем, что разность ($\omega_0 - \omega_{2,1}$) (рис. 1.3) составляет не более 20 % от величины ω_0 по соображениям недопущения перегрузки электродвигателя в период разгона. Поэтому для приближенного определения t_p вполне допустимо принять $t_\delta \approx t_1$. Приближенное значение t_p можно определить из уравнения (1.15)

$$\int_{0}^{t_{\delta}} dt = \frac{I'_{i\delta}}{M_{\delta\delta} - M_{\tilde{n}i\delta}} \int_{0}^{\omega_{2,\delta}} d\omega_{2},$$

$$t_{\delta} = \frac{I'_{i\delta}}{M_{\delta\delta} - M_{\tilde{n}i\delta}} \cdot \omega_{2,\delta}.$$
(1.21)

1.2 Практическая часть

Варианты заданий представлены в таблице 1.2.

Определение исходных данных для расчета

Синхронная частота вращения ротора электродвигателя

тавлены в таблице 1.2.
ение исходных данных для расчета
щения ротора электродвигателя

$$n_0 = \frac{60 \cdot f}{p}$$
, (об/мин). (1.22)
рость ротора
 $\omega_i = \frac{\pi n_i}{30}$, (рад/с). (1.23)
орость ротора
 $\omega_i = \frac{\pi n_i}{30}$, (рад/с). (1.23)
а валу двигателя
 $M_i = \frac{1000N_i}{\omega_i}$, (Н·м).

Синхронная угловая скорость ротора

$$\omega_i = \frac{\pi n_i}{30}$$
, (рад/с). (1.23)

Номинальная угловая скорость ротора

$$\omega_i = \frac{\pi n_i}{30}$$
, (рад/с)

Номинальный момент на валу двигателя

$$M_i = \frac{1000N_i}{\omega_i}$$
, (H·M).

Постоянные коэффициенты а и в механической характеристики электродвигателя

Таблица 1.2 – Варианты заданий с исходными данными для расчета

	Таолица 1.2 – Варианты задании с исходными данными для												1								
вариантов	N,	$n_{0,}$	n _{H,}	p,	<i>f</i> , Гц	$M_{\ddot{I}}$	M_{max}	GD^2 ,	l_1 ,	l_2 ,	l_3 ,	m,	U_{2-3}	<i>М</i> _{спр,} Н/м	$I_{16},$	I'_{2a} ,	I''_{2a}	$I_{26},$	I_3 ,		
ан	кВт	об/мин	ОО/МИН	пар	7,1	Ì	1	кгс.м	M	M	M	КΓ		П/М	кг•м²	кг•м²	кг∙м²	кг•м²	кг•м²		
арк				полю-	12	7,	1 min														
B.				сов	Ì	7															
NeNe																					
~							9														
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20		
1	0,18	3000	2710	1	50	2	2,2	$16,6\cdot10^{-4}$	0,29	0,02	0,056	3	0,6	0,04	5,88·10 ⁻³	1,3.10-3	0,013·10 ⁻³	1,23·10 ⁻³	$0,67\cdot10^{-3}$		
2	0,25	3000	2800	1	50	2	2,2	$18,6\cdot10^{-4}$	0,29	0,02	0,056	3	0,6	0,05	5,88·10 ⁻³	1,3·10 ⁻³	$0,013\cdot10^{-3}$	$1,23\cdot10^{-3}$	$0,67\cdot10^{-3}$		
3	0,37	3000	2770	1	50	2	2,2	$30,5\cdot10^{-4}$	0,29	0,02	0,056	3	0,6	0,03	$5,88\cdot10^{-3}$	$1,3\cdot10^{-3}$	$0.013 \cdot 10^{-3}$	$1,23\cdot10^{-3}$	$0,67\cdot10^{-3}$		
4	0,55	3000	2750	1	50	2	2,2	36·10 ⁻⁴	0,29	0,02	0,056	3	0,6	0,04	$5,88\cdot10^{-3}$	$1,3\cdot10^{-3}$	$0,014\cdot10^{-3}$	$1,23\cdot10^{-3}$	$0,67\cdot10^{-3}$		
5	0,18	1500	1375	2	50	2,1	2,2	31,3.10-4	0,29	0,02	0,056	3	0,5	0,05	6.10^{-3}	$1,25\cdot10^{-3}$	$0,014\cdot10^{-3}$	$1,1\cdot10^{-3}$	$0,7\cdot10^{-3}$		
6	0,25	1500	1365	2	50	2,0	2,0	49,5·10 ⁻⁴	0,29	0,02	0,056	3	0,5	0,04	6·10 ⁻³	$1,25\cdot10^{-3}$	$0,014\cdot10^{-3}$	$1,1\cdot10^{-3}$	$0,7\cdot10^{-3}$		
7	0,37	1500	1365	2	50	2,0	2,2	55·10 ⁻⁴	0,29	0,02	0,056	3	0,5	0,03	6·10 ⁻³	1,25·10 ⁻³	$0,014\cdot10^{-3}$	1,1.10-3	$0,7 \cdot 10^{-3}$		
8	0,55	1500	1365	2	50	2,0	2,2	52·10 ⁻⁴	0,29	0,02	0,056	3	0,5	0,04	6·10 ⁻³	1,25·10 ⁻³	$0,014\cdot10^{-3}$	1,1.10-3	$0,7 \cdot 10^{-3}$		
9	0,18	1000	885	3	50	2,2	2,2	69,4·10 ⁻⁴	0,29	0,02	0,056	3	0,5	0,05	7·10 ⁻³	1,4·10 ⁻³	$0,015\cdot10^{-3}$	1,15·10 ⁻³	0,8.10-3		
10	0,25	1000	890	3	50	2,2	2,2	86.10-4	0,29	0,02	0,056	3	0,5	0,045	7·10 ⁻³	1,4·10 ⁻³	$0,015\cdot10^{-3}$	1,15·10 ⁻³	0,8.10-3		
11	0,37	1000	910	3	50	2,0	2,2	67·10 ⁻⁴	0,29	0,02	0,056	3	0,5	0,045	7·10 ⁻³	1,4·10 ⁻³	$0,015\cdot10^{-3}$	1,15·10 ⁻³	0,8.10-3		
12	0,55	1000	900	3	50	2,0	2,2	81.10-4	0,29	0,02	0,056	_ 3	0,5	0,5	7·10 ⁻³	1,4·10 ⁻³	$0,015\cdot10^{-3}$	1,15·10 ⁻³	0,8.10-3		
13	0,37	3000	2750	1	50	2,0	2,2	30,5.10-4	0,3	0,025	0,06	2,5	0,6	0,045	5,5·10 ⁻³	1,35·10 ⁻³	$0.02 \cdot 10^{-3}$	1,2·10 ⁻³	0,7·10 ⁻³		
14	0,55	3000	2750	1	50	2,0	2,2	36.10-4	0,3	0,024	0,06	2,5	0,5	0,047	6,5.10-3	1,37·10 ⁻³	$0,015\cdot10^{-3}$	1,25·10 ⁻³	$0,65\cdot10^{-3}$		
15	0,25	3000	2800	1	50	2	2,2	18,6.10-4	0,29	0,02	0,056	3	0,6	0,03	5,8·10 ⁻³	1,3·10 ⁻³	$0.013 \cdot 10^{-3}$	$1,2\cdot 10^{-3}$	$0.58 \cdot 10^{-3}$		
16	0,37	3000	2770	1	50	2	2,2	30.10-4	0,29	0,02	0,056	3	0,7	0,035	5,8·10 ⁻³	1,3·10 ⁻³	$0.013 \cdot 10^{-3}$	$1,2\cdot10^{-3}$	$0,65\cdot10^{-3}$		
17	0,55	3000	2750	1	50	2	2,2	36.10-4	0,29	0,02	0,056	3	0,7	0,045	5,8·10 ⁻³	1,3·10 ⁻³	$0.013 \cdot 10^{-3}$	$1,2\cdot10^{-3}$	$0,75\cdot10^{-3}$		
18	0,18	1500	1375	2	50	2,1	2,2	31.10-4	0,29	0,02	0,056	3,2	0,4	0,025	6·10 ⁻³	1,22·10 ⁻³	$0,014\cdot10^{-3}$	1,1.10-3	0,6.10-3		
19	0,25	1500	1365	2	50	2	2	49.10-4	0,29	0,02	0,056	3,2	0,4	0,028	6.10-3	1,22.10-3	$0,014\cdot10^{-3}$	1,2·10 ⁻³	$0,65\cdot10^{-3}$		
20	0,37	1500	1365	2	50	2	2,2	55·10 ⁻⁴	0,29	0,02	0,056	3,2	0,4	0,037	6·10 ⁻³	1,22·10 ⁻³	$0,014\cdot10^{-3}$	1,25·10 ⁻³	$0,67\cdot10^{-3}$		
21	0,55	1500	1365	2	50	2	2,2	52.10-4	0,29	0,02	0,056	3,2	0,4	0,047	6.10^{-3}	1,22·10 ⁻³	0,014·10 ⁻³	1,3·10 ⁻³	$0,7\cdot10^{-3}$		
22	0,18	1000	885	3	50	2,2	2,2	69,4·10 ⁻⁴	0,29	0,02	0,056	3,5	0,5	0,035	$6,5\cdot10^{-3}$	1,27·10 ⁻³	0,016·10 ⁻³	1,35·10 ⁻³	$0,75\cdot10^{-3}$		
23	0,25	1000	890	3	50	2,2	2,2	86.10-4	0,29	0,02	0,056	3,5	0,6	0,037	$6,5\cdot10^{-3}$	1,27·10 ⁻³	0,016·10 ⁻³	1,35·10 ⁻³	$0,75\cdot10^{-3}$		
24	0,37	1000	910	3	50	2	2,2	67·10 ⁻⁴	0,29	0,02	0,056	3,5	0,55	0,04	6,5.10-3	1,27·10 ⁻³	0,016·10 ⁻³	1,4·10 ⁻³	0,8·10 ⁻³		
25	0,55	1000	900	3	50	2	2,2	81.10-4	0,29	0,02	0,056	3,5	0,4	0,05	$6,5\cdot10^{-3}$	1,27·10 ⁻³	0,016·10 ⁻³	1,4·10 ⁻³	0,8.10-3		
-	-		•	-												-78)					

$$a = \frac{M_i \cdot \omega_0}{\omega_0 - \omega_i}$$
, (H·M); $b = \frac{M_i}{\omega_0 - \omega_i}$, (H·M).

Усилие, развиваемое пружиной возврата в момент разгона привода

$$G_{\tilde{a}\delta} \cdot l_1 = P_{i\delta} \cdot l_2$$
,

$$P_{i\delta} = \frac{G_{\tilde{a}\delta} \cdot l_1}{l_2}$$
, (H).

Осевое усилие сжатия дисков фрикционной муфты в период разгона $Q = \frac{G_{\check{a}\check{o}} \cdot l_1 - P_{r\check{o}} \cdot l_3}{l_2} \,, \, (\mathrm{H}).$

$$Q = \frac{G_{\tilde{a}\tilde{o}} \cdot l_1 - P_{\tilde{r}\tilde{o}} \cdot l_3}{l_2}, \text{ (H)}.$$

$$R_{\delta \delta} = \frac{D-d}{4}$$
, (M).

Момент трения во фрикционной муфте при f = 0.25; k = 1.1:

$$M_{\delta\delta} = \frac{Q \cdot f \cdot R_{\delta\delta}}{k}$$
, (H·m).
$$c = a - M_{\delta\delta}$$
, (H·m).

Коэффициент с

$$c = a - M_{\delta\delta}$$
, (H·M).

C = a - I.

Гателя момент с. $M_{\tilde{m}\delta 2} = \frac{M_c}{U_{2-3}}$, (H·м). Приведенный к валу двигателя момент сил сопротивления на валу швейной машины

$$M_{\tilde{m}\delta 2} = \frac{M_c}{U_{2-3}}, (H \cdot M)$$

Коэффициент c'

$$c' = a - M_{\tilde{m}\delta 2}$$
, (H·M).

Момент инерции ротора электродвигателя

$$I_{1a} = \frac{10 \cdot GD^2}{4g}, (\kappa \Gamma \cdot M^2).$$

Момент инерции звена 1

$$I_1 = I_{1a} + I_{1a}$$
, ($\kappa \Gamma \cdot M^2$).

Момент инерции звена 2 и машины, приведенные к звену 2

$$I'_{i\delta 2} = I'_{2a} + I''_{2a} + I_{2\dot{a}} + \frac{I_3}{U^2_{2-3}}, (\kappa_{\Gamma} \cdot M^2).$$

Приведенный к валу 2 момент инерции всех подвижных звеньев привода

$$I_{i\delta 2} = I_1 + I'_{i\delta 2}.$$

Построс. $p_{\omega} = \frac{p_{\omega}}{2}$ Для построения графика используем формулу $\frac{-c}{2} = \frac{bt}{I_l} \left(\omega_0 - \frac{c}{b} \right) + \frac{c}{b}, ($ Построение графика изменения угловой скорости звена 1 в период

$$\omega_1 = e^{-\frac{bt}{I_I}} \left(\omega_0 - \frac{c}{b} \right) + \frac{c}{b}, \text{ (рад/c)}.$$

Задавая значения t, получаем значения угловой скорости. Результаты заносим в таблицу 1.3.

Таблица 1.3

$t_{ m c}$	0	0,05	0,1	0,15	0,2	0,25	0,3	0,35	0,4
$\omega_{\!\scriptscriptstyle 1}$, рад/с		90),,						

Строим график $\omega_1 = f(t)$.

Построение графика изменения угловой скорости звена 2 в период разгона

Для построения графика используем формулу

$$\omega_2 = \frac{M_{\delta\delta} - M_{\tilde{m}\delta2}}{I'_{\tilde{t}\delta2}} \cdot t$$
, (рад/с).

представляет собой прямую, проходящую через координат, поэтому достаточно определить одну точку. Определим = 0,5 с и строим график. Точки пересечения графиков $\omega_1 = f(t)$ и $\omega_2 = f(t)$ даст нам абсциссу временного интервала t_1 разгона привода, а проекция точки на ось ординат даст угловую скорость $\omega_{\scriptscriptstyle 2-1}$ окончания первой фазы разгона. Составляющая t_2 времени разгона определится из формулы

$$t_2 = \frac{I_{r \delta 2}}{b} \ln \frac{c' - b\omega_{2-1}}{c' - b\omega_H}, (c).$$

Время разгона t_p определится по формуле

$$t_{\delta} = t_1 + t_2$$
, (c).

РАСЧЕТ Расчетно-графическая работа № 2. МАХОВИКА ЭЛЕКТРОПРИВОДА ВЫРУБОЧНОГО ПРЕССА

В работе выполняется аналитический расчет электропривода вырубочного пресса в момент выполнения цикла вырубания детали верха из Анализируется необходимость установки маховика вал электродвигателя привода гидравлического насоса.

Исходные данные

Варианты заданий и исходные данные сведены в таблицу 2.1.

2.1 Теоретическая часть

Проверка маховых масс электропривода

Исходными данными ДЛЯ предварительного расчета мощности электродвигателя являются: диаграмма приведенного момента сопротивления (рис. 2.1) и синхронная угловая скорость двигателя. При предварительном расчете исходят из того, что угловые скорости звена приведения в начале $\omega_{\scriptscriptstyle HV}$ и конце $\omega_{\kappa y}$ одного цикла установившегося движения T_u одинаковы: $\omega_{\mu y} = \omega_{\kappa y}$. Следовательно, в период установившегося движения $M_{\vec{A}} = M_{\vec{I}} = const$, т. е. считали, что угловая скорость звена приведения постоянна. На самом деле, при скорость установившегося переменном $M_{\tilde{N}\tilde{I}|\tilde{D}}$ угловая движения приведения изменяется.

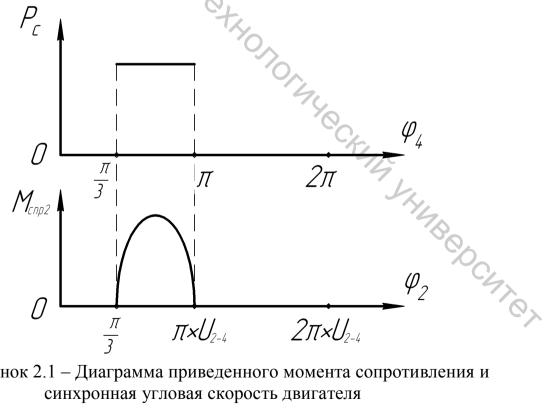


Рисунок 2.1 – Диаграмма приведенного момента сопротивления и синхронная угловая скорость двигателя

Таблица 2.1

Ŋoౖ	N,	n,	GD^2 ,	m_2 ,	P _{AO} ,	D _{II} ,	d,	Z,	Q,	q,	F,	D _p ,	h _p ,	ρ,	F _{max} ,
вари	кВт	îá	KFC·M ²	КΓ	МПа	M	M	шт.	ë	q, см ³	Ĥ	MM	MM	ã	кН
анта		ìèí	14,0						ìèí					cì 3	
1	1,1	1420	1,29x10 ⁻²	120	0,5	0,13	0,04	3	52,1	45	60	60	22	7,8	80
2	1,1	1430	0,0014	130	0,5	0,13	0,04	3	36	32	60	60	22	7,8	80
3	1,3	1420	0,0033	140	0,6	0,15	0,045	3	26,8	25	65	60	22	7,8	80
4	1,5	1415	0,0132	150	0,6	0,15	0,045	3	70	56	70	60	22	7,8	80
5	1,6	1420	0,0033	155	0,6	0,16	0,05	3	13	12,5	75	60	22	7,8	80
6	1,7	1430	0,0033	160	0,7	0,16	0,05	3	18,5	16	80	60	22	7,8	80
7	2,1	1420	0,0033	165	0,7	0,165	0,055	3	15,5	16	85	60	22	7,8	80
8	2,2	1425	0,0024	170	0,7	0,165	0,055	3	26,8	25	90	60	22	7,8	80
9	3,0	1435	0,00347	175	0,7	0,17	0,06	3	36,2	32	100	80	30	7,8	80
10	3,1	1420	0,0056	180	0,7	0,17	0,07	3	52,1	45	100	80	30	7,8	80
11	1,3	1440	0,0014	135	0,55	0,15	0,05	3	70	56	75	60	22	7,8	80
12	1,5	1420	0,0014	160	0,5	0,16	0,05	3	36	32	80	65	24	7,8	80
13	1,6	1440	0,004	170	0,6	0,17	0,06	3	56	45	85	70	24	7,8	80
14	1,7	1440	0,0037	165	0,6	0,18	0,07	3	26,8	25	90	75	25	7,8	80
15	1,3	1420	0,033	140	0,6	0,15	0,045	3	36,8	32	65	60	22	7,8	90
16	1,5	1415	0,0132	150	0,6	0,15	0,045	3	52,1	46	70	60	22	7,8	95
17	1,6	1420	0,0033	155	0,6	0,16	0,05	3	70	56	75	60	22	7,8	98
18	1,7	1430	0,0033	160	0,7	0,16	0,05	3	36,2	32	80	60	22	7,8	100
19	2,1	1420	0,0033	165	0,7	0,165	0,055	3	52,1	45	85	60	22	7,8	110
20	2,2	1425	0,0024	170	0,7	0,165	0,06	3	56	45	100	80	30	7,8	110
21	3,0	1425	0,00347	175	0,7	0,17	0,06	3	36	32	100	80	30	7,8	120
22	3,1	1420	0,0056	180	0,7	0,17	0,07	3	26,8	25	120	80	30	7,8	130
23	1,3	1420	0,0033	140	0,6	0,145	0,047	3	70	56	60	60	23	7,8	85
24	1,5	1415	0,0132	150	0,5	0,165	0,05	3	52,1	45	80	72	23	7,8	120
25	1,6	1420	0,033	155	0,5	0,17	0,06	3	36,2	32	90	75	24	7,8	130

Для упрощения дальнейших рассуждений принимаем, что звеном приведения является вал двигателя 1.

Колебания угловой скорости ω_1 звена приведения регламентируются, в любом случае, механической характеристикой электродвигателя (рис. 2.2):

$$\begin{aligned}
\omega_{\text{lmin}} &= k \omega_{\hat{E}B}, \\
\omega_{\text{lmax}} &= \omega_{0}.
\end{aligned}$$
(2.1)

где k – коэффициент запаса, k = 0,8...0,9.

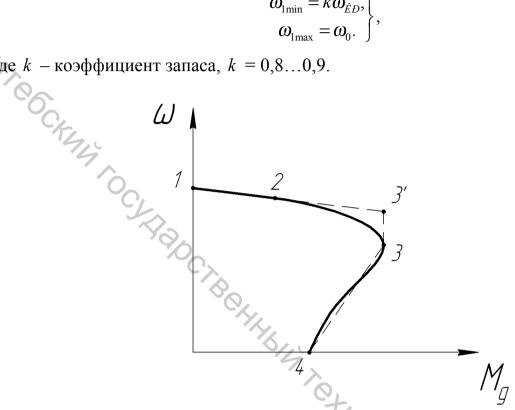


Рисунок 2.2 – График механической характеристики асинхронного электродвигателя

Экстремальные значения ω_1 , указанные в (2.1), следует рассматривать как предельно допустимые. Иногда могут быть заданы и более узкие пределы изменения ω_1 , например:

$$\omega_{\text{lmin}} = \omega_{i} - \omega_{0} - \omega_{i} = 2\omega_{i} - \omega_{0},$$

$$\omega_{\text{lmax}} = \omega_{0}.$$
(2.2)

Последние определены из условия, что модули отклонения $\omega_{ ext{lmin}}$ и $\omega_{ ext{lmax}}$ равны, что обеспечивает наиболее благоприятный режим работы электродвигателя.

Из теории механизмов и машин [4] известен также способ задания неравномерности движения с помощью коэффициента неравномерности.

Поставим задачу определения такого значения $I^*_{ii\partial 1}$ — суммы моментов инерции и масс звеньев привода, приведенных к звену приведения, при котором движение звена приведения происходит с угловой скоростью, изменяющейся в заданных пределах ω_{lmin} , ... ω_{lmax} .

При этом рассмотрим случай, когда допустимо принять $I^*_{i\,\delta 1}$ постоянным. Уравнение движения звена приведения в этом случае имеет вид

$$M_{\ddot{A}} - M_{\tilde{m} \, \delta 1} = I^*_{\tilde{r} \, \delta 1} \frac{d\omega_1}{dt}. \tag{2.3}$$

Для экстремальных значений $\omega_{\rm l}$ из (2.3) имеем $\frac{d\omega_{\rm l}}{dt}=0$, $M_{\ddot{A}}=M_{\tilde{m}\,\delta l}$. Из последнего равенства следует, что при $\omega_{\rm l}=\omega_{\rm l\,min}$ и $\omega_{\rm l}=\omega_{\rm l\,max}$ кривые $M_{\tilde{m}\,\delta l}=f_{1}(\phi_{\rm l})$ и $M_{\ddot{A}}=f_{2}(\phi_{\rm l})$ пересекаются. Ординаты точек пересечения определятся с помощью уравнения $M_{\ddot{A}}=a-b\omega$:

$$M_{\ddot{A} \max} = a - b\omega_{1 \min},$$

 $M_{\ddot{A} \min} = a - b\omega_{1 \max}.$

Таким образом, на заданной кривой $M_{\tilde{m}\tilde{o}1}=f_1(\pmb{\varphi}_1)$ может быть определен ряд точек a,a',... с ординатами $M_{\tilde{A}\min}$ и ряд точек $\dot{a},\dot{a}',...$ с ординатами $M_{\tilde{n}\tilde{u}\tilde{o}1}=f_1(\pmb{\varphi}_1)$, может быть вычерчен в виде ломаной линии приближенный график зависимости $M_{\tilde{A}}=f_2(\pmb{\varphi}_1)$.

Ломаную линию проводят таким образом, чтобы увеличению (уменьшению) $M_{\tilde{m}\,\delta}$ соответствовало увеличение (уменьшение) $M_{\tilde{A}}$; при этом точки максимума выбираются из ряда $\dot{a}, \dot{a}', \ldots$, а точки минимума – из ряда a, a', \ldots

На рисунке 2.3 график зависимости $M_{\ddot{A}}=f_2(\phi_1)$ представлен ломаной $a-\dot{a}'-a$. На графиках $M_{\ddot{m}\check{o}1}=f_1(\phi_1)$ и $M_{\ddot{A}}=f_2(\phi_1)$ выделим интервалы значений ϕ_2 , для которых $M_{\ddot{m}\check{o}2}>M_{\ddot{A}}$. На рисунке 2.3 таковым является интервал $\phi_a,...\phi_{\dot{a}'}$. В общем случае таких интервалов может быть несколько.

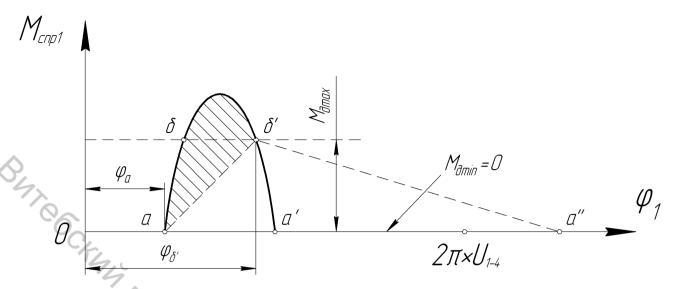


Рисунок 2.3 – График зависимости $M_{\tilde{m}\,\tilde{o}1}=f_1(\phi_1)$ и $M_{\tilde{A}}=f_2(\phi_1)$

Для этого интервала запишем уравнение кинетической энергии звена приведения:

$$I_{i\delta 1}^{*} \frac{\omega_{1k}^{2} - \omega_{1H}^{2}}{2} = A_{\bar{A}}^{*} - A_{\tilde{m}\delta}^{*}, \qquad (2.4)$$

где ω_{lk} – угловая скорость звена приведения в конце интервала;

 ω_{1H} – то же в начале интервала,

 $A_{\ddot{A}}^* - A_{\ddot{m}\dot{o}}^*$ – работы моментов $M_{\ddot{A}}$ и $M_{\ddot{m}\dot{o}1}$ на интервале.

Если окажется, что $I_{\vec{i}\,\delta 1} \geq I_{\vec{i}\,\delta 1}^*$, то выбранный согласно ориентировочному расчету электродвигатель обеспечит необходимый режим движения звена приведения.

Если же $I_{r\delta 1} < I_{r\delta 1}^*$, то необходимо установить на звене приведения дополнительную массу (маховик) с моментом инерции $I_{a\hat{t}r} = I_{r\delta 1}^* - I_{r\delta 1}$. Масса, эквивалентная $I_{a\hat{t}r}$ по кинетической энергии, может быть установлена на любом звене привода.

Если установка дополнительной массы невозможна по каким-либо соображениям, то следует выбрать двигатель большей мощности и проверку повторить.

2.2 Практическая часть

Схема электропривода вырубочного пресса приведена на рисунке 2.4.

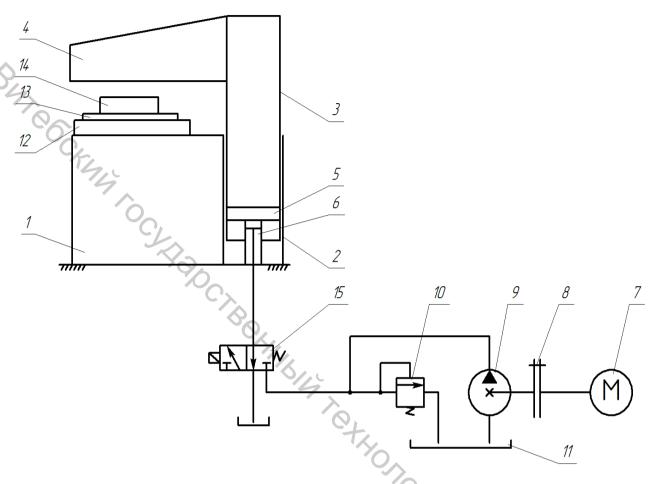


Рисунок 2.4 — Схема электропривода вырубочного пресса: 1 — основание пресса, 2 — цилиндрическая направляющая, 3 — скалка, 4 — ударник, 5 — поршень, 6 — шток, 7 — электродвигатель, 8 — муфта-маховик, 9 — насос, 10 — предохранительный клапан, 11 — гидробак, 12 — распределитель, 13 — вырубочная плита, 14 — лист кожи, 15 — резак, 16 — крышка

Принцип действия.

На вырубочную плиту 13 укладывается лист кожи 14 и устанавливается резак 15. Запускается электродвигатель 7, который через муфту-маховик 8 передает крутящий момент на ротор насоса 9. Предохранительный клапан 10 поддерживает рабочее давление в системе. При включении электромагнита распределителя 12 давление жидкости через распределитель 12, шток 6 поступает в рабочую полость гидроцилиндра, которая ограничена сверху поршнем 5, а снизу крышкой 16, т. к. шток неподвижно закреплен в корпусе машины, то скалка с ударником под действием давления опускается и ударяет по резаку 15, вырубая деталь. В момент соприкосновения резака с вырубочной

12 плитой электромагнит распределителя выключается, ударник возвращается в исходное положение.

Определение исходных данных для расчета

Характеристики электродвигателя. Синхронная угловая скорость ротора

$$\omega_0 = \frac{\pi \cdot n_0}{30} \left(\frac{\eth \dot{a} \ddot{a}}{c} \right).$$

Номинальная угловая скорость ротора

$$\omega_n = \frac{\pi \cdot n_n}{30} \left(\frac{\eth \dot{a} \ddot{a}}{c} \right).$$

Номинальный момент к валу электродвигателя

$$M_n = \frac{1000 \cdot N}{\omega_n} \, (\text{H·m}).$$

Коэффициенты «а» и «b» механической характеристики электродвигателя

$$a = \frac{M_n \cdot \omega_0}{\omega_0 - \omega_n} (H \cdot M),$$

$$b = \frac{M_n}{\omega_0 - \omega_n} (H \cdot M).$$

Максимальный момент на валу электродвигателя

$$M_{\ddot{a}max} = a - b \cdot \omega_{\min} (H \cdot M)$$

Минимальный момент на валу электродвигателя

$$b = \frac{M_n}{\omega_0 - \omega_n}$$
 (H·м).

На валу электродвигателя
 $M_{amax} = a - b \cdot \omega_{\min}$ (H·м).

на валу электродвигателя
 $M_{amin} = a - b \cdot \omega_{\max}$ (H·м);
 $\omega_{\max} = \omega_0$;
 $\omega_{\min} = 2\omega_n - \omega_0$.

инерции привода по формуле
 $I_{i\,\delta} = I_1 + \frac{m_{3-4}}{u_{7-3}^2}$,

Определение момента инерции привода по формуле

$$I_{i\,\delta} = I_1 + \frac{m_{3-4}}{u_{7-3}^2}$$

$$I_1 = I_7 + I_8 + I_9$$

где $m_{\scriptscriptstyle 3-4}$ – масса скалки с ударником; $I_{\scriptscriptstyle 7}$ – момент инерции ротора электродвигателя; I_8 – момент инерции муфты-маховика; I_9 – момент инерции ротора насоса.

Момент инерции ротора электродвигателя

$$I_7 = \frac{10GD^2}{4g} (\kappa \Gamma \cdot M^2).$$

Момент инерции ротора насоса

$$I_8 = \frac{mD^2}{8},$$

m – масса ротора, кг; где

D – диаметр ротора насоса, м;

 ρ – плотность, 7,8 г/см³;

$$m = V \cdot \rho$$

где

$$m=V\cdot
ho$$
 ; $V-$ объем ротора, M^3 ; $V=\frac{\pi\cdot D_{\delta}^{-2}}{4}\cdot h_{\delta}$, M^3 . На первом этапе расчета момент инерции мах

На первом этапе расчета момент инерции маховика I_8 не учитывается. Определение передаточного числа привода

$$u_{7-3} = \frac{\omega_i}{v_c},$$

 ω_i – номинальная угловая скорость ротора, рад/с; где

 v_c – линейная скорость скалки, м/с;

скалки, м/с;
$$\omega_i = \frac{\pi n_i}{30}, \text{ рад/c};$$

$$q_i \cdot \frac{\omega_i}{2\pi} = S \cdot v;$$

$$S = \frac{\pi \left(D_{\ddot{o}}^2 - d_{\sigma \dot{o}}^2\right)^2}{4}, \text{ м}^2;$$

$$u_{7-3} = \frac{2\pi \cdot S}{q_i}, \text{ рад/м},$$

 q_i – рабочий объем насоса, м³; S – рабочая площадь гидроцилиндра, м²; $D_{\ddot{o}}$ – диаметр цилиндра, м; $d_{\sigma \, \dot{o}}$ – диаметр штока, м.

Определение приведенного к валу электродвигателя момента сил сопротивления $M_{\rm cnp}$.

Из графика (рис. 2.5) $F_a = f(x)$ следует, что M_{cmp} будет изменяться в функции перемещения ударника х, при этом принимаем в исходном положении ударника x = 0. Для расчета электропривода требуется иметь график $M_{\tilde{m}\delta} = f(\phi)$, ϕ – угол поворота ротора электродвигателя при зависимости перемещении ударника на величину X_i .

Рисунок 2.5 – График изменения усилия вырубания F = f(h)

лового положе. еличину x_i используем ψ_{Γ} яления определяется по формуле $M_{\tilde{m}\tilde{r}\tilde{o}} = \frac{F_{\hat{a}} + F_1 + F_2 - G}{u_{7-3}} \,, \, (\text{H·м}),$ тирубки, H; Для определения углового положения ротора электродвигателя при перемещении ударника на величину x_i используем формулу $\varphi = u_{7-3} \cdot x_i$.

Момент сил сопротивления определяется по формуле

$$M_{\tilde{n}\tilde{u}\delta} = \frac{F_{\hat{a}} + F_1 + F_2 - G}{u_{7-3}}, (H \cdot M),$$

 $F_{\hat{a}}$ – текущее значение усилия вырубки, H; где

 F_1 – сила давления воздуха в скалке, H;

 F_2 – сила трения в уплотнениях поршня, H;

G – вес ударника и скалки, H;

 u_{7-3} – передаточное число от ротора электродвигателя 7 к ударнику 3.

Сила давления воздуха определится

$$F_1 = P_0 \cdot \frac{\pi D_{\ddot{o}}^2}{4}$$
, (H),

где P_0 – давление давления в скалке, H/м²;

 $D_{\ddot{o}}$ – диаметр цилиндра.

Сила трения в уплотнениях поршня

$$F_2 = F \cdot Z$$
, (H),

где F – сила трения в одном кольце;

Z – количество колец.

$$k_{\varphi} = \frac{2\pi}{10} = 0,628 \text{ рад/мм}.$$

Для определения $I^*_{ii\delta 1}$ интерес представляет только один из указанных интервалов, на котором площадь, заключенная между кривыми $M_{iii\delta 1}=f_1(\pmb{\varphi}_2)$ и $M_{\vec{A}}=f_2(\pmb{\varphi}_1)$, – наибольшая (рис. 2.6).

Учитывая, что $\omega_{\mathrm{l}k}=\omega_{\mathrm{l}\min}$, $\omega_{\mathrm{l}H}=\omega_{\mathrm{l}\max}$, $A_{\ddot{A}}^*< A_{\tilde{m}\check{\sigma}}^*$, запишем уравнение (2.4) в виде

$$I^*_{\vec{i}\,\delta 1} \frac{\omega_{
m lmax}^2 - \omega_{
m lmin}^2}{2} = A_{\dot{e}c\dot{a}}\,,$$
 (2.5) $A^*_{\vec{A}}$ — разность работ $M_{\widetilde{m}\,\delta 1}$ и $M_{\vec{A}}$ на интервале

где $A^*_{\dot{e}c\dot{a}}=A^*_{\,iii\,\delta}-A^*_{\,\,ii}$ — разность работ $M_{\,iii\,\delta 1}$ и $M_{\,ii}$ на интервале (избыточная работа).

 $A_{\grave{e}c\acute{a}}$ может быть определена по формуле

$$A_{\dot{e}\dot{c}\dot{a}} = S_{\dot{e}\dot{c}\dot{a}} \cdot K_M \cdot K_{\varphi} \,, \tag{2.6}$$

где $S_{\dot{e}c\dot{a}}$ — площадь, заключенная между графиками $M_{\tilde{m}\,\delta 1}$ и $M_{\tilde{A}}$ на интервале. Тогда из формулы (2.5) с учетом (2.6) имеем

$$I^*_{i\delta 1} = \frac{2S_{\dot{e}\dot{c}\dot{a}} \cdot K_M \cdot K_{\varphi}}{\omega_{1\text{max}}^2 - \omega_{1\text{min}}^2}.$$
 (2.7)

Определив численное значение $I^*_{i\delta}$, необходимо сравнить с численным значением $I_{i\delta}$, определенным ранее.

Если $I^*_{\ r\delta} < I_{\ r\delta}$ – маховик в приводе не нужен; $I^*_{\ r\delta} > I_{\ r\delta}$ – маховик необходим.

Момент инерции маховика рассчитывается по формуле

$$I_{i \stackrel{.}{\alpha \hat{o}}} = I^*_{i \stackrel{.}{\delta}} - I_{i \stackrel{.}{\delta}}.$$

Геометрические размеры маховика зависят от конструкции узла привода, т. е. можно задаваться или диаметром, или толщиной маховика, а затем находить неизвестный размер.


$$I_{i \, \dot{a} \check{o}} = \frac{m \cdot D^2}{8} \, ,$$

m — масса маховика, кг; где D – диаметр, м;

$$m = \frac{8I}{D^2}; \quad m = \frac{\pi \cdot D^2}{4} \cdot h_i \cdot \rho;$$

плотность, $\rho = 7.8 \text{ г/см}^3$.

Определяем высоту маховика h, м.

ЛИТЕРАТУРА

- 1. Коновалов, Л. И. Элементы и схемы электроавтоматики : учебное пособие для студ. вузов спец. «Автоматизация и компл. механизация хим.-технол. процессов» / Л. И. Коновалов, Д. П. Петелин. 2-е изд., перераб. и доп. Москва : Высшая школа, 1985. 216 с., илл.
- 2. Иванов, М. Н. Детали машин : учебник для студ. втузов / М. Н. Иванов, под ред. В. А. Финогенова. 6-е изд. перераб. Москва : Высшая школа, 1985. 216 с.
- 3. Москаленко, В. В. Электрический привод : учебник для студ. высш. учеб. заведений / В. В. Москаленко. Москва : Издательский центр «Академия», 2007.— 368 с.
- 4. Артоболевский, И. И. Теория механизмов / И. И. Артоболевский. Москва: Наука, 1965. 776 с., илл.
- b.
 Mapo.
 Map Демидович, Б. П. Основы вычислительной математики Б. П. Демидович, И. А. Марон. – Москва : Наука, 1970. – 664 с.