Для измерения температурных режимов планируется использовать датчики температуры (термопары), монтируемые на испытуемый электродвигатель. Эти датчики подключаются к двухканальным измерителям TPM — 200. Для измерения температуры обмотки статора используется опыт «вольтметра - амперметра».

Для измерения вентиляционных (аэродинамических) характеристик используется модульная аэродинамическая труба. В качестве измерительного элемента давления воздушного потока выступает пневмоэлектрический преобразователь давления типа РС-28G, расхода воздуха - преобразователь разности давлений газов АРR-2000G. Датчик температуры устанавливается в трубе на расстоянии двух диаметров вентилятора от начала аэродинамической трубы. Все три датчика подключаются к расходомеру ОВЕН РМ-1. Расходомер РМ-1 представляет собой средство для измерения расхода и давления воздуха вентилятора в режиме онлайн.

Для измерения скорости потока воздуха в аэродинамической трубе используется анемометр.

Конечным итогом экспериментальных исследований является массив сохраненных данных, который располагается в архиваторе МСД200, и сохраняется на персональном компьютере.

Таким образом, конечной целью разработки является получение лабораторного комплекса, способного проводить лабораторные работы и научные исследования как в ручном, так и в автоматическом режиме с регистрацией, сохранением и отображением измеряемых параметров в виде трендов на экране монитора в режиме реального времени.

УДК 538.956, 65.011.56, 004

АВТОМАТИЗИРОВАННАЯ СИСТЕМА ДЛЯ ИССЛЕДОВАНИЯ ДИАЛЕКТРИЧЕСКИХ ХАРАКТЕРИСТИК НЕЛИНЕЙНЫХ МАТЕРИАЛОВ

Шут В.Н., проф., Мозжаров С.Е., преп., Ковалев К.А., студ., Королев С.А., студ.

Витебский государственный технологический университет,

г. Витебск, Республика Беларусь

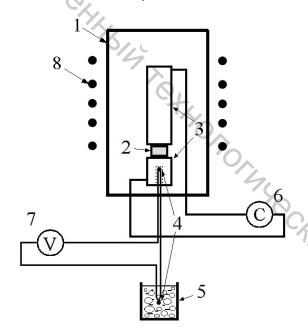
<u>Реферат</u>. Описана автоматизированная система для измерения зависимости диэлектрической проницаемости и тангенса угла потерь нелинейных материалов от температуры. Система позволила повысить качественный уровень проводимых исследований.

<u>Ключевые слова</u>: диэлектрическая проницаемость, тангенс угла потерь, Arduino, цифровой измеритель.

Характерной чертой современного физического эксперимента является огромное количество получаемой информации, накопление и хранение которой возможно только с использованием компьютеров. При этом встает задача установления связи между компьютером и измерительной аппаратурой используемой в эксперименте [1].

Интерфейс IEEE 488, который на Западе известен как GPIB (General Purpose Interface Bus - интерфейсная шина общего назначения), а в странах бывшего СССР как КОП (канал общего пользования по ГОСТ 26.003-80) и которым оснащено большинство современных измерительных приборов позволяет объединять приборы в автоматизированные измерительные системы и комплексы. Но для управления таким комплексом нужен компьютер, оборудованный адаптером этого интерфейса. В типовой комплектации большинства персональных компьютеров он отсутствует, а как самостоятельное изделие стоит недешево [2].

Стандарт IEEE 488 содержит две части: IEEE-488.1, описывающую аппаратную часть и низкоуровненое взаимодействие с шиной, и IEEE-488.2, определяющую порядок передачи команд по шине. Необходимость поддержки встроенного программного обеспечения 488.2 - наиболее важный аспект для производителя приборов. Помимо аппаратного интерфейса, в прибор необходимо поставить процессор, оперативную память для программ и написать лексический интерпретатор. Перед этой задачей спасовала вся приборостроительная промышленность СССР. Необходимы были недорогие процессоры для установки в приборы


41

и средства разработки встроенного программного обеспечения. Ни того, ни другого промышленность СССР не выпускала, как впрочем, и приемлемых по цене рабочих станций и ПК. Поэтому приборы выпускались с интерфейсом КОП (488.1) без поддержки 488.2 [3].

Вторым компонентом системы команд GPIB является Стандарт Команд Программируемого Инструмента (Standard Commands for Programming Instruments, SCPI), принятый в 1990 году. Несмотря на то, что SCPI был разработан на основе стандарта IEEE-488.2, он может быть легко адаптирован для любой другой аппаратной базы. SCPI определяет стандартные правила сокращения ключевых слов, используемых в качестве команд.

Основными характеристиками сегнетоэлектрических материалов является диэлектрическая проницаемость и тангенс угла диэлектрических потерь. Необходимо отметить, что сегнетоэлектрики обладают фазовым переходом при определенной температуре (температуре Кюри), при которой и $tg\delta$ и ε претерпевают значительные изменения. Точное определение аномалий в окрестности фазовых переходов играет важную роль при разработке новых материалов и их практическом применении. Поэтому автоматизация подобных измерений позволяет повысить точность исследований и уменьшить трудозатраты оператора при длительных температурных измерениях.

Схема установки приведена на рисунке 1. В нашем распоряжении имеется достаточно хороший цифровой измеритель LCR - E7-8 . (1988 г. выпуска) и цифровой вольтметр B7-34A, также производства СССР. Измерительная ячейка помещается в печь. Емкость C, тангенс угла диэлектрических потерь $tg\delta$ измеряли в слабых электрических полях частотой 1 кГц с помощью цифрового измерителя LCR E7-8. Температура образца контролировалась дифференциальной хромель-алюмелевой термопарой, $9\mathcal{L}$ С которой измерялась вольтметром B7-34A. Измерения выполнялись в диапазоне от +25 до + 250 °C. Паразитная емкость не превышала 2 рF и учитывалась при дальнейших вычислениях. Погрешность измерения C, $tg\delta$ не превышала 0,5 %. Пересчет емкости в диэлектрическую проницаемость проводили по формуле плоского конденсатора.

1 – измерительная ячейка, 2 – исследуемый образец, 3 – прижимные медные электроды, 4 – термопара (CrAl), 5 – сосуд Дьюара со льдом, 6 – измеритель LCR, 7 – вольтметр, 8 – печь Рисунок 1 - Структурная схема измерительной установки

Используемые в установке приборы имеют нестандартный аппаратный интерфейс: на задних панелях имеются разъемы с 56 и 22 контактами, по которым приборы принимают команды и возвращают результаты измерений. Непосредственно подключить приборы к ПК невозможно. Также отсутствует программный интерфейс - то есть какая-либо система управляющих команд. Например - нужно включить режим измерения постоянного напряжения — подайте соответствующую комбинацию цифровых уровней на управляющий разъём. Нужно прочитать показания — снимите 21 цифровой сигнал на разъёме ЦПУ, и так далее.

Задача по автоматизации установки свелась к двум пунктам:

- 1. Оснастить В7-34А и Е7-8 современным аппаратным интерфейсом, чтобы подключать его непосредственно к ПК;
- 2. «Научить» приборы понимать SCPI команды, чтобы можно было использовать высокоуровневое ПО (например LabView).

Для решения поставленных задач решено было использовать аппаратно-программную платформу «Arduino»,что позволило минимизировать объём пайки и обойтись без специальных программаторов. Было использовано две платы Arduino Mega 2560.

Агduino Mega построена на микроконтроллере ATmega2560. Плата имеет 54 цифровых входа/выходов (14 из которых могут использоваться как выходы ШИМ), 16 аналоговых входов,4 последовательных порта UART, кварцевый генератор 16 МГц, USB коннектор, разъем питания, разъем ICSP и кнопка перезагрузки [4] Связь с ПК у Arduino осуществляется через USB интерфейс, и это решало задачу № 1. Для решения второй задачи использовались библиотеки scpi-parser и scpi-multimeter, а также написанный скетч для прошивки Arduino. Библиотеку scpi-parser выполняет всю работу, связанную с синтаксическим разбором SCPI команд. Библиотека scpi-multimeter реализует логику SCPI команд и конечный автомат, занимающийся асинхронным считыванием и обработкой показаний цифровых приборов. Библиотека абстрагируется от аппаратной части, делегируя работу с портами ввода-вывода вовне, для чего использует некий абстрактный программный интерфейс. Сама прошивка для Arduino реализует абстрактный интерфейс, который пишет и читает в цифровые и последовательный порты на плате микроконтроллера.

Для проверки работы измерительной системы была написана программа, обрабатывающая результаты измерений. Экранная форма программы приведена на рисунке 2.

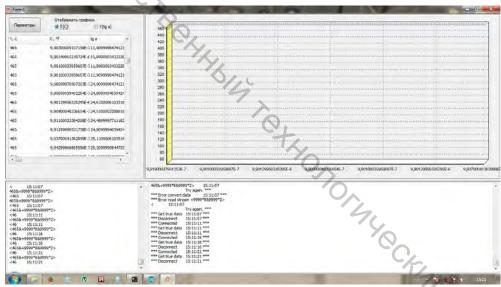


Рисунок 2 - Экранная форма программы

При разработке измерительной системы нами пока не реализовано автоматическое управление печью. Использование Arduino позволит, без проблем, сделать это в дальнейшем.

Список использованных источников

- 1. Автоматизация физических исследований и эксперимента: компьютерные измерения и виртуальные приборы на основе LabVIEW 7/ Под. ред. Бутырина П.А. М.: ДМК Пресс, 2005. 264 с.
- 2. Блок GPIB-USB HS National Instruments [Электронный ресурс] URL: http://signal.ru/catalog/kop-(gpib)/blok-GPIB-USB-HS-National-Instruments.- (дата обращения 13.03.2017)
- 3. Анатомия GPIB [Электронный ресурс] URL: http://www.ixbt.com/mainboard/gpib.html. (дата обращения 13.03.2017)
- 4. Arduino Mega 2560 [Электронный ресурс] URL: http://arduino.ru/Hardware/ArduinoBoardMega2560.- (дата обращения 13.03.2017)

YO «BITY», 2017 43