INTERNATIONAL SCIENTIFIC JOURNAL VOLUME 1 ISSUE 8 UIF-2022: 8.2 | ISSN: 2181-3337

АНАЛИТИЧЕСКИЕ ИССЛЕДОВАНИЯ НАТЯЖЕНИЯ УТОЧИНЫ НА ПРОЖЕКТОРНЫХ СТАНКАХ

Рыклин Дмитрий Борисович

доктор технических наук, профессор, «Витебский государственный технологический университета,

Расулов Хамза Юлдошевич

кандидат технических наук, PhD, Ташкентский институт текстильной и легкой промышленности

Абдурахмонов Олим Шойкулович

Стар. преп, Термезского инженерно-технологического института,

Болтаев Исмоил

студент, Термезского инженерно-технологического института

https://doi.org/10.5281/zenodo.7437480

Аннотация. В работе приведены аналитические исследования изменения натяжения уточной нити в безударных механизмах подачи и торможения уточины за цикл работы прожекторных станков. Получены формулы натяжения уточины, учитывающие угол, радиус и коэффициент трения, а также коэффициент жесткости уточной нити.

Ключевые слова: натяжения, уточной нити, станков, коэффициент, угол между, ткани.

ANALYTICAL INVESTIGATIONS OF THE WEFT TENSION ON SPOTLIGHT MACHINES

Abstract: In work reduced analytical research changing of a tension weft yarn in unaccented filling and weft brake motions beyond cycle in one rotate of mainshaft in projectile looms. Received formula a tension of weft yarn, taking into account the angle, radius, coefficient of friction and also coefficient of rigidity of weft yarn.

Keywords: tension, weft thread, machine tools, coefficient, angle between, fabrics.

Формирование ткани обусловлено величиной предприбойного натяжения уточной нити, которое создается за очень короткий промежуток времени в период прибоя утка, причем характер формирования ткани установлен свойствами утка (жесткостью, коэффициентом трения и.т.д).

В определенные периоды работы прожекторного ткацкого станка натяжение утка должно быть различным. Натяжение уточной нити должно быть минимальным при движении прокладчика через зев, а в конце прокладывания при выходе из зева, уточная нить должна иметь дополнительное натяжение, которое предупреждает образования петли в зеве со стороны приемной коробки. В период возврата прокладчика утка необходимо подтянуть уточину компенсатором, при этом уточина должна иметь максимальное натяжение для предупреждения петляния утка и правильного формирования ткани [1].

Натяжение уточных нитей утка перед прибоем утка можно определить следующим выражением

$$T = T_0 + T_K + T_T \tag{1}$$

 T_{o} - предварительное заправочное (набегающей ветви) натяжение утка, создаваемое постоянным тормозным устройством;

INTERNATIONAL SCIENTIFIC JOURNAL VOLUME 1 ISSUE 8 UIF-2022: 8.2 | ISSN: 2181-3337

 T_{κ} - натяжение (сбегающей ветви) утка, зависящее от жесткости уточной нити, коэффициента и угла трения в глазке компенсатора;

 $T_{\scriptscriptstyle T}$ - дополнительное натяжение уточины, создаваемое телом качения (грузом) или трением тормозной поверхности колодки, определяемое положением компенсатора.

Предварительное заправочное натяжение (набегающей ветви) определяется

$$T_0 = 2Nf \tag{2}$$

N - нормальное давление на нить в тормозном устройстве;

f - коэффициент трения соответственно нити в натяжном приборе.

Согласно Л Эйлеру соотношение между набегающей ветви T_0 и сбегающей ветви T_K имеет следующее выражение и зависит от угла трения (α) и коэффициента трения (α) нити о глазок компенсатора

$$T_{\kappa} = T_{o} \exp(f \cdot \alpha) \tag{3}$$

Угол трения α нити о глазок компенсатора может быть определен

$$\alpha = \varphi + \beta$$

 ϕ - угол между набегающей ветвью нити и горизонталью в глазке компенсатора; β - угол между сбегающей ветвью нити и горизонталью в глазке компенсатора.

Угол между набегающей (ϕ) и сбегающей (β) ветвью нити и горизонталью в глазке компенсатора определяем

$$\varphi = (90^0 - \varphi_1) \beta = (90^0 - \beta_1)$$

 ϕ_1 - угол между набегающей ветвью нити и вертикалью в глазке компенсатора; β_1 - угол между набегающей ветвью нити и вертикалью в глазке компенсатора.

Откуда определяется

$$tg\varphi_1 = \frac{l_1}{S} tg\beta_1 = \frac{l_2}{S}$$

 l_1 - расстояние от нитенаправителя до глазка компенсатора со стороны набегающей ветви нити;

 l_2 - расстояние от нитенаправителя до глазка компенсатора со стороны сбегающей ветви нити;

S- размах компенсатора.

Учитывая то, что l_1 и l_2 величины постоянные и могут быть определены практически на ткацком станке $l_1 = l_2 = 75$ мм, а величина S перемещения компенсатора имеет размах от 0 до 200 мм то можно определить значения углов φ , φ_1 , β , β_1 и угла трения α уточины о глазок компенсатора. Из результататов расчета углов φ , φ_1 , φ , φ и угла трения нити в глазке в зависимости от положения компенсатора утка следует то, что максимальный угол трения α нити о глазок при крайнем верхнем положении компенсатора утка.

Формула Эйлера (3) дает одинаковое натяжения нити T_{κ} для заданного угла обхвата α и натяжения набегающей ветви $T_{\rm o}$ независимо от формы направляющего глазка на котором расположена уточина. Например, для круглых цилиндров с различными диаметрами и при одинаковых углах обхвата, натяжение нити одинаково. Несомненно, то, что натяжение нити не может быть одинаковым для различных форм направляющей

INTERNATIONAL SCIENTIFIC JOURNAL VOLUME 1 ISSUE 8 UIF-2022: 8.2 | ISSN: 2181-3337

цилиндра, по которой располагается уточина. Для одних форм цилиндров оно может больше, а для других меньше.

Для нити длиной I скользящей по окружности, при дуге охвата равной ($r \cdot \alpha$) и зависящей от жесткости уточины натяжение нити (T_{κ}) имеет вид

$$T_{\kappa} = \frac{2K_{H} \cdot r \cdot f}{1 + f^{2}} \left(e^{f\alpha} + \frac{1 - f^{2}}{2f} \cdot \sin \alpha - \cos \alpha \right) \tag{4}$$

 $K_{\rm H}$ - жесткость уточной нити, зависящая от рода волокна и линейной плотности пряжи, сн/мм;

f - коэффициент трения нити о направляющий глазок компенсатора;

а - угол трения нити о направляющий глазок компенсатора;

г - радиус трения нити о направляющий глазок компенсатора.

По формуле (4) проведен расчет натяжения уточины $T_{\rm K}$ в зависимости от положения компенсатора при различных значениях радиуса трения, коэффициента трения и жесткости уточных нитей. Из анализа полученных результатов следует то что при увеличении параметров r, f, $K_{\rm H}$ натяжение уточной нити возрастает, при этом наибольшее влияние оказывают коэффициент трения и жесткость нити.

Натяжения нити Тт, создаваемое телом качения компенсатора определяется

$$T_T = 2 \cdot f \cdot Q_o \cdot \frac{S}{I}$$

 $Q_o \cdot \frac{S}{l}$ - нормальное давление на уточину тел качения имеет переменное значение и зависит от положения компенсатора, т.е. угла качания ψ компенсатора;

$$Q_o$$
 - вес груза;

l - длина компенсатора.

В таблице 1 приведены результаты расчета натяжения заправочного (T_o) , натяжения от жесткости уточины (T_κ) на глазке компенсатора, натяжения создаваемое грузом (T_τ) в компенсаторе в зависимости от положения компенсатора.

Таблица 1 Результаты расчета натяжения уточины в зависимости от положения компенсатора

Натяжение нитей утка, сн.	Перемещение компенсатора, мм, S									
	20	40	60	80	100	120	140	160	180	200
Заправочное натяжение уточины, сн., T_o .	5	5	5	5	5	5	5	5	5	5
Натяжение уточины от жесткости нити в компенсатора сн., T_{κ} .	1,4	2,7	3,3	4,0	4,3	4,4	4,5	4,5	4,5	4,5

INTERNATIONAL SCIENTIFIC JOURNAL VOLUME 1 ISSUE 8 UIF-2022: 8.2 | ISSN: 2181-3337

Натяжение уточины в компенсаторе От груза, сн., T _т .	0,5	1,0	1,5	2,0	2,5	3,0	3,5	4,0	4,5	4,9
Общее натяжение уточины, сн., Т.	6,9	8,7	9,8	11,0	11,8	12,4	13,0	13,5	14,0	14,4

Анализ таблицы показывает то, что общее натяжение (Т) уточины возрастает по мере перемещения компенсатора вверх.

Следовательно, предложенные формулы учитывают жесткость уточины (вид и линейную плотность нити), коэффициент трения, радиус трения, положение компенсатора и давление груза на нить в компенсаторе.

Таким образом, проведены аналитические исследования натяжения нитей утка в новой системе торможения и подачи уточины, получены закономерности изменения натяжения уточины в зависимости от радиуса трения, коэффициента трения, угла трения, жесткости уточины, положения компенсатора.

REFERENCES

- 1. О.Т.Рахмонов. Оптимизация параметров строения и выработки хлопкошелковых тканей. Диссертация на соискание академической степени магистра, Ташкент, ТИТЛП, 2008 г.
- 2. Расулов X., Кадырова Д.Н., Рахимходжаев С.С. Влияние параметров среды на перемещения опушки ткани в упругой заправки станка. Журнал" Проблемы текстиля" 2014. №2. 61 стр
- 3. O.Sh.Abdurahmonov, S.N.Yarashov, N.Q.Safarov (2022 March) "Ko'ylakbop to'qimalar tuzilishiga ta'sir etuvchi omillar tahlili" // Oriental Renaissance: Innovative, educational, natural and social sciences. VOLUME 2 ISSUE-3, 970–977.