Выбор средств измерения технологических переменных влияет на качество, эффективность и безопасность технологического процесса, а также на затраты на его реализацию и поддержку.

В качестве средства измерения технологических переменных в автоматизированной системе управления приводом будем использовать датчики скорости (энкодеры) и концевые переключатели.

В зависимости от конкретных условий работы токарного станка с ЧПУ, можно выбрать наиболее подходящий тип энкодера, учитывая соотношение цены и качества. В целом, абсолютные энкодеры являются наиболее предпочтительными для токарных станков с ЧПУ, так как они обеспечивают высокую точность и надежность без потери данных при отключении питания.

Выбираем абсолютный энкодер AFM60 Inox (рисунок 1).

Рисунок 1 – Абсолютный энкодер AFM60 Inox

Список использованных источников

1. Виды измерительных устройств. [Электронный ресурс]. – Режим доступа: https://www.linguee.com/russian-english/translation/B5.html. – Дата доступа: 15.04.2024.

УДК 004.056.55

ИЗУЧЕНИЕ ОСОБЕННОСТЕЙ АЛГОРИТМОВ ШИФРОВАНИЯ ЭЦП В УЧЕБНОМ ПРОЦЕССЕ

Писарик В. С., студ., Куксевич В. Ф., ст. преп., Новиков Ю. В., к.т.н., доц.

Витебский государственный технологический университет, г. Витебск, Республика Беларусь

В современных условиях цифровизации большинства отраслей человеческой деятельности приходится иметь дело с технологиями, не являющимися широко известными для не связанных с ИТ-индустрией специалистов. Так, например, при подготовке в высших учебных заведениях специалистов в области сертификации, стандартизации и метрологии изучается ряд дисциплин, связанных с автоматизацией технологических процессов данной отрасли. К их числу относится и дисциплина «Автоматизация информационного обеспечения», учебная программа которой предполагает наличие лабораторных работ, позволяющих получить практические навыки в данном направлении деятельности. Одной из тем, изучаемых данной дисциплиной, является тема, связанная с электронным документооборотом и системами управления им.

В зависимости от предназначения и специфики работы компании, используемые системы электронного документооборота бывают разных видов. При этом электронные документы, проходящие через такие системы, равнозначны бумажным документам с печатью и личной подписью. Как раз вопрос электронной цифровой подписи (ЭЦП) и может быть достаточно подробно изучен в лабораторном курсе указанной выше дисциплины подготовки специалиста.

Технология ЭЦП предполагает генерирование пары ключей: секретного и открытого. Для генерации обоих ключей используются разные математические алгоритмы, ознакомление с преимуществами и недостатками которых и является предметом лабораторного исследования.

В разрабатываемой лабораторной работе предполагается изучение наиболее известных алгоритмов шифрования ЭЦП: RSA и EGSA. Обучающемуся предлагается, изучив краткие

УО «ВГТУ», 2024 **143**

теоретические сведения о методах криптографической защиты данных, по определенной цифре шифра из таблицы вариантов выбрать сообщения, подлежащие шифрованию, а также ключи и параметры алгоритмов шифрования. Используя имеющиеся данные, и описанные в лабораторной работе алгоритмы шифрования, необходимо создать ЭЦП для хешированного сообщения, предоставить результаты расчетов и сделать вывод о проведенной работе.

Реализация указанных выше алгоритмов шифрования может быть осуществлена средствами табличного процессора MS Excel для любого из вариантов таблицы данных лабораторной работы.

Список использованных источников

1. Электронная цифровая подпись [Электронный ресурс]. – Режим доступа: https://protect.htmlweb.ru/ecp.htm. – Дата доступа: 10.05.2024.

УДК 534.833: 687.053

ИССЛЕДОВАНИЕ КОЛЕБАНИЙ ШВЕЙНОЙ ГОЛОВКИ

Макарова А. Д., студ., Новиков Ю. В., к.т.н., доц.

Витебский государственный технологический университет, г. Витебск, Республика Беларусь

Колебания швейной головки остается вопросом оптимальных динамических характеристик. Перемещения с колебаниями влияют на качество стежков и износ рабочих органов машин.

Целью исследования является определение колебаний швейной головки.

Выявлено, что колебания швейной головки оказывают влияние на следующие параметры: изменение шага перемещения; частота перемещения в единицу времени; жесткость звеньев механизма; масса звеньев.

Оценка влиятельных факторов проведена с использованием теоретических исследований.

Теоретическое исследование колебаний швейной головки осуществляется с учетом составленных уравнений колебаний швейной головки по динамической модели (рисунок 1):

$$I_0 \varphi + k_A y_A l = M_0 sin\Omega t; \tag{1}$$

$$I_A \varphi + k_O y_h l = M_A \sin \Omega t; \tag{2}$$

где I_O — момент инерции швейной головки относительно опоры O; φ — угол поворота швейной головки; k_A — жесткость виброизлятора; y_A — текущая координата точки A; l — расстояние между опорами; M_0 — суммарный момент реакций относительно опоры O; I_A — момент инерции швейной головки относительно опоры A; φ — угол поворота швейной головки; k_O — жесткость виброизлятора; y_b — текущая координата точки O; M_A — суммарный момент реакций относительно опоры A.

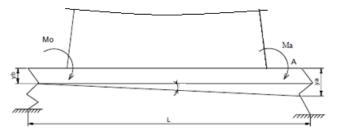


Рисунок 1 – Динамическая модель швейной головки

144 Тезисы докладов