Mid-infrared emission properties of erbium-doped fluorite-type crystals SIMONE NORMANI,¹ PAVEL LOIKO,¹ LIZA BASYROVA,¹ ABDELMJID BENAYAD,¹ ALAIN BRAUD,¹ ELENA DUNINA,² LIUDMILA FOMICHEVA,³ ALEXEY KORNIENKO,² AMMAR HIDEUR,⁴ AND PATRICE CAMY^{1,*} **Abstract:** We report on a comparative study of the spectroscopic properties and mid-infrared laser performance of five 5 at.% Er^{3+} -doped fluorite-type crystals MF_2 , including parent compounds CaF_2 , SrF_2 , BaF_2 , and solid-solution ("mixed") ones $(Ca,Sr)F_2$ and $(Sr,Ba)F_2$. In the $M=Ca \rightarrow Sr \rightarrow Ba$ series, the host matrix phonon energy decreases, the absorption and mid-infrared emission spectra of Er^{3+} become narrower and more structured, and the luminescence lifetimes of the $^4I_{11/2}$ and $^4I_{13/2}$ Er^{3+} manifolds increase. The Er^{3+} transition probabilities were calculated using the Judd-Ofelt theory. In the "mixed" compounds, the Er^{3+} ions tend to reside in the larger / heavier cation environment. The low-temperature (12 K) spectroscopy evidences the presence of a single type of clusters at this doping level; the crystal-field splitting for Er^{3+} ions in clusters was determined. Continuous-wave low-threshold laser operation at ~2.8 µm (the $^4I_{11/2} \rightarrow ^4I_{13/2}$ transition) was achieved with all five Er^{3+} :MF2 crystals. The maximum achieved laser slope efficiency was 37.9% (Er^{3+} :CaF2), 23.5% (Er^{3+} :SrF2) and 17.2% (Er^{3+} :BaF2). © 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement #### 1. Introduction Calcium fluoride (CaF_2 , also known as fluorite in the mineral form) is a well-known laser host material for doping with trivalent rare-earth ions (RE^{3+}) [1–3]. Undoped CaF_2 features good thermal properties (high thermal conductivity and isotropic thermal expansion), low phonon energy, low refractive index and broadband transparency. It also exhibits a unique tendency for strong RE^{3+} ion clustering even at moderate doping concentrations (>0.1 at.%), leading to inhomogeneously broadened spectral bands [4–6]. As a result, the absorption and emission spectra of RE^{3+} ions in CaF_2 greatly resemble those in fluoride glasses being almost structureless and very broad. Such a "glassy-like" spectroscopic behavior is very appealing for broadband wavelength tuning [7,8] and generation of ultrashort pulses in mode-locked lasers [9,10]. The energy-transfer processes among the neighboring RE^{3+} ions (nonradiative energy-transfer, cross-relaxation, and energy-transfer upconversion) are greatly promoted in clusters [11]. This can be used for boosting the efficiency of certain laser transitions of RE^{3+} ions. CaF_2 is a low-melting-point compound. Its growth is well-developed, e.g., by the Czochralski or Bridgman-Stockbarger methods. CaF₂ belongs to the family of divalent metal fluorides, MF₂ (where M = Ca, Sr, Ba, Cd, or Pb) [12–15]. These materials all belong to the cubic class (sp. gr. $Fm3^-m$, fluorite-type structure). The M²⁺ and F⁻ are located at face-centered cubic lattice points and tetrahedral voids, respectively. Compared to CaF₂, other MF₂ crystals are less studied for RE³⁺ doping #482402 Journal © 2023 ¹Centre de Recherche sur les Ions, les Matériaux et la Photonique (CIMAP), UMR 6252 CEA-CNRS-ENSICAEN, Université de Caen Normandie, 6 Boulevard Maréchal Juin, 14050 Caen Cedex 4, France ²Vitebsk State Technological University, 210035 Vitebsk, Belarus ³Belarusian State University of Informatics and Radioelectronics, 6 Brovka St., 220027, Minsk, Belarus ⁴CORIA UMR6614, CNRS-INSA-Université de Rouen, Normandie Université, Avenue de l'université, BP. 12, 76801 Saint Etienne du Rouvray, France *patrice.camy@ensicaen.fr but they are also attractive as laser host media as they benefit from either a lower melting point, or better thermal properties, or lower phonon energies. Fluorite-type crystals can also form substitutional solid-solutions ($M1_{1-x}M2_x$) F_2 for the entire range of 0 < x < 1 [16–18]. For such "mixed" compositions, the melting point is expected to decrease further as compared to the parent compounds [19,20]. An additional spectral broadening is also expected due to the compositional disorder. The growth and laser operation of some RE^{3+} -doped "mixed" fluorite-type crystals were reported mainly focusing on (Ca,Sr) F_2 [21–23]. Erbium ions (Er³⁺) are of interest for generation of mid-infrared radiation at ~2.8 μ m [24,25] according to the $^4I_{11/2} \rightarrow ^4I_{13/2}$ transition, Fig. 1. The low-phonon-energy behavior of MF₂ crystals and the tendency for strong ion clustering promoting the energy-transfer upconversion stimulate the interest in the development of mid-infrared Er³⁺:MF₂ lasers. Labbe *et al.* first reported on a mid-infrared 5 at.% Er³⁺:CaF₂ laser delivering 80 mW at 2.80 μ m with a slope efficiency of 30% and a small laser threshold of 23 mW [1]. Basyrova *et al.* demonstrated power scaling of a similar laser generating 0.83 W at 2.80 μ m with a slightly higher slope efficiency of 31.6% [26]. In these studies, high-brightness laser pumping was implemented. Further power scaling was achieved using commercial InGaAs diode lasers as pump sources. Zong *et al.* developed a diode-pumped 1.7 at.% Er³⁺:CaF₂ laser generating 2.32 W at 2.76 μ m at the expense of a lower slope efficiency of 21.2% [27]. So far, Er³⁺:CaF₂ [26,27], Er³⁺:SrF₂ [28] and Er³⁺:(Ca,Sr)F₂ [23] crystals have been studied for mid-infrared lasers. Note that Er³⁺:CaF₂ can also be obtained in the form of transparent ceramics. Šulc *et al.* reported on a pulsed diode-pumped 5 at.% Er³⁺:CaF₂ ceramic laser with a broad tuning range of 2687–2805 nm (118 nm) [29]. Despite the existence of multiple studies for several Er^{3+} :MF₂ crystal compositions, their spectroscopic and mid-infrared laser properties have not been directly compared so far. In the present work, we report on a comparative study of mid-infrared emission properties of five fluorite-type Er^{3+} -doped MF₂ crystals, including parent and solid-solution compounds. **Fig. 1.** Energy level scheme of Er^{3+} ions showing all the manifolds assigned in the absorption spectra of Er^{3+} :MF₂ crystals, pump and laser transitions, ETU – energy-transfer upconversion. #### 2. Crystal growth The MF₂ crystals (M = Ca, Sr, Ba) melt congruently at relatively low temperatures and they can be grown by the Bridgman-Stockbarger or Czochralski methods. The $Er^{3+}:MF_2$ crystals were grown by the Bridgman method using graphite crucibles (Φ 7-8 mm, height: 40 mm). The MF₂ (M = Ca, Sr, Ba) powders (purity: 4N, Sigma-Aldrich) and ErF_3 powder obtained by fluorination of the Er_2O_3 precursor (4N, Alfa Aesar). Five compositions were tested: M = Ca, Sr, Ba, $Ca_{0.5}Sr_{0.5}$ and $Sr_{0.5}Ba_{0.5}$. The doping level was 5 at.% Er^{3+} (with respect to M^{2+} cations). The optical quality and spectroscopic properties of RE^{3+} -doped MF_2 crystals are sensitive to even small pollution of oxygen / water in the growth chamber as they can lead to the presence of oxygen-assisted sites for the dopant ions or even formation of a translucent oxyfluoride phase. To avoid that, the growth chamber was sealed to vacuum (<10⁻⁵ mbar) and refilled with a mixture of $Ar + CF_4$ gases. The starting reagents were well mixed and placed into the crucible which was then heated slightly above (~30-50 °C) the melting point and the solution was homogenized for 3-4 hours (h). The growth was ensured by a vertical translation of the crucible in a vertical temperature gradient of 30-40 °C/cm. After the growth was completed, the crystals were cooled down to room temperature (20 °C) within 48 h. For the "mixed" crystals, the melting point is reduced as compared to those of the parent compounds. E.g., for Er^{3+} :(Ca,Sr)F₂ and Er^{3+} :(Sr,Ba)F₂, it is $T_f = 1373$ °C and 1315 °C, respectively (compare with 1477 °C, 1418 °C and 1386 °C for SrF₂, CaF₂ and BaF₂, respectively). The as-grown Er^{3+} : MF_2 crystals with a cylindrical shape (Φ 7-8 mm, length: 35 - 40 mm) were transparent and rose-colored due to the Er^{3+} doping, Fig. 2(a). Samples for spectroscopic and laser studies were cut from the central part of the cylindrical barrels with a thickness of 6-7 mm and then polished to laser-grade quality, Fig. 2(b). **Fig. 2.** Photographs of Er^{3+} :MF₂ crystals: (a) an as-grown Er^{3+} :CaF₂ crystal boule; (b) cut and polished Er^{3+} :MF₂ samples. #### 3. Raman spectra The Raman spectra of Er^{3+} :MF₂ crystals, Fig. 3(a), were measured using a confocal microscope (InVia, Renishaw) equipped with a × 50 Leica objective and an Ar⁺ ion laser (457 nm). Fluorite-type crystals have O_h symmetry and a triatomic unit cell thus exhibiting only one Raman-active mode at the center of the Brillouin zone having a T_{2g} symmetry [30]. Indeed, the Raman spectra of all the studied Er^{3+} :MF₂ crystals contain a single intense peak assigned to this vibration. Frequently, MF₂ crystals may exhibit additional broad Raman bands in the spectral range of 100– $600 \, cm^{-1}$ owing to structure defects (interstitial / vacant anion sites) [30, 31]. Such a behavior is not observed in our crystals. For Er^{3+} : CaF_2 , Er^{3+} : SrF_2 and Er^{3+} : BaF_2 crystals, the peak frequency of the Raman mode and its linewidth (FWHM) are 321 / 11.0 cm⁻¹, 285 / 10.2 cm⁻¹ and 242 / 12.0 cm⁻¹, respectively. Thus, the latter compound is the most favorable one in terms of low-phonon-energy behavior. For the "mixed" compositions, the Raman peak broadens and is reduced in intensity and the peak **Fig. 3.** Raman spectroscopy of Er^{3+} :MF₂ crystals: (a) Raman spectra, $\lambda_{exc} = 457 \text{ cm}^{-1}$, *numbers* – peak frequencies; (b) phonon energy vs. the square root of the average cationic mass. position takes an intermediate place between those for the corresponding parent compounds, indicating an even distribution of the host-forming cations throughout the structure (a formation of a substitutional solid-solution) [32]. E.g., for Er^{3+} :(Ca,Sr)F₂, the peak Raman frequency is 304 cm^{-1} and the peak linewidth is 25.9 cm^{-1} . The phonon energy of Er^{3+} :MF₂ decreased monotonically with increasing the cationic mass in agreement with the classical approach, $\nu = (1/2\pi)(k/\mu)^{1/2}$, where k is the force constant and μ is the reduced mass of the M – F system [33]. #### 4. Optical spectroscopy #### 4.1. Optical absorption The absorption spectra of Er^{3+} ions were measured using a spectrophotometer (Lambda 1050, Perkin Elmer). They are shown in Fig. 4. Here, the assignment of Er^{3+} transitions is according to Carnall *et al.* [34]. The absorption spectra for both parent and "mixed" Er^{3+} :MF₂ crystals are smooth and broad owing to inhomogeneous spectral broadening caused by a strong ion clustering. In the series $M = Ca \rightarrow Sr \rightarrow Ba$, the complexity and diversity of RE^{3+} ion clusters in MF₂ crystals decrease leading to more intense and structured absorption bands which also exhibit a slight blue-shift [12]. Indeed, for the ${}^4I_{15/2} \rightarrow {}^4I_{11/2}$ transition, which is used for pumping mid-infrared erbium lasers, the peak absorption cross-section, σ_{abs} , varies from 2.77×10^{-21} cm² at 972.3 nm (Er^{3+} :BaF₂) to 2.59×10^{-21} cm² at 969.5 nm (Er^{3+} :SrF₂), and further to 2.22×10^{-21} cm² at 967.6 nm (Er^{3+} :CaF₂), while the corresponding absorption bandwidth is 12.9 nm (Er^{3+} :BaF₂), 16.9 nm (Er^{3+} :SrF₂), and 22.2 nm (Er^{3+} :CaF₂). A close look at the absorption spectra of "mixed" crystals indicate that there is a great similarity between those of $(Er^{3+}:(Ca,Sr)F_2 \text{ and } Er^{3+}:SrF_2)$ and $(Er^{3+}:(Sr,Ba)F_2 \text{ and } Er^{3+}:BaF_2)$ ones, suggesting that the dopant ions in such solid-solution compounds tend to reside in clusters with a local surrounding predominantly composed of one of the two host-forming cations (namely, the heavier / larger one – Sr^{2+} or Ba^{2+} , respectively). This suggests that Er^{3+} clusters have a tendency to sit in the heavier-cation environment within the solid-solution $(M1_{1-x}M2_x)F_2$ crystals. A similar behavior was observed previously for clusters of Nd^{3+}/Lu^{3+} ions in "mixed" $(Sr,Ba)F_2$ crystals [35]. #### 4.2. Judd-Ofelt analysis The measured absorption spectra of Er^{3+} ions in the five studied MF_2 crystals were used to calculate the transition probabilities by means of the standard Judd-Ofelt (J-O) theory [36,37]. The reduced squared matrix elements $U^{(k)}$ ($k=2,\ 4,\ 6$) were calculated using the free-ion **Fig. 4.** (a-h) Absorption spectra of Er^{3+} ions in MF₂ crystals. parameters from [38]. The magnetic dipole (MD) contributions to transition intensities (for $\Delta J = J - J' = 0, \pm 1$) were calculated within the Russell–Saunders approximation using Er³⁺ wave functions under the free-ion assumption. Table 1 summarizes the experimental and calculated absorption oscillator strengths ($f_{\rm exp}$ and $f_{\rm calc}$, respectively) for the three parent compounds, ${\rm Er^{3+}:CaF_2}$, ${\rm Er^{3+}:SrF_2}$ and ${\rm Er^{3+}:BaF_2}$. There exists a direct relation between the absorption oscillator strength / integrated absorption cross-section and the radiative lifetime of the excited-state (the principle of reciprocity, referring #### 1011 ## Optical Materials EXPRESS to Einstein coefficients). For Er^{3+} transitions from the ground-state ($^4I_{15/2}$) to the two lower-lying excited-states ($^4I_{13/2}$ and $^4I_{11/2}$), the f_{calc} value decreases in the $M = Ca \rightarrow Sr \rightarrow Ba$ series, so that an opposite tendency is expected for the radiative lifetimes of these two states. The root mean square (r.m.s.) deviation between the f_{exp} and f_{calc} values is relatively low for all the tested $Er^{3+}:MF_2$ crystals, lying in the range of 0.137–0.257. Table 1. Absorption Oscillator Strengths^a for Er³⁺ lons in Parent MF₂ (M = Ca, Sr, Ba) Crystals | Transition | Er ³⁺ :CaF ₂ | | Er ³⁺ :SrF ₂ | | Er ³⁺ :BaF ₂ | | |---|-------------------------------------|---|-------------------------------------|--|-------------------------------------|--| | $^{4}I_{15/2} \rightarrow $ $^{2S+1}L_{J}$ | $f_{\text{exp}}, \\ \times 10^{-6}$ | $f_{\rm calc}$, J-O $\times 10^{-6}$ | $f_{\text{exp}}, \\ \times 10^{-6}$ | $f_{\rm calc}$, J-O $\times 10^{-6}$ | $f_{\text{exp}}, \\ \times 10^{-6}$ | $f_{\rm calc}$, J-O $\times 10^{-6}$ | | $^{4}I_{13/2}$ | 2.496 | 1.643 ^{ED} + 0.448 ^{MD} | 2.129 | 1.510 ^{ED} +
0.448 ^{MD} | 2.220 | 1.404 ^{ED} +
0.461 ^{MD} | | $^{4}I_{11/2}$ | 0.714 | 0.693^{ED} | 0.643 | 0.631 ^{ED} | 0.598 | 0.592^{ED} | | $^{4}I_{9/2}$ | 0.333 | 0.229^{ED} | 0.328 | 0.283 ^{ED} | 0.343 | 0.333^{ED} | | $^{4}F_{9/2}$ | 2.264 | 2.139^{ED} | 2.217 | 2.283 ^{ED} | 2.265 | 2.406^{ED} | | $^{4}S_{3/2} + ^{2}H_{11/2}$ | 3.531 | 3.366 ^{ED} | 3.422 | 3.544 ^{ED} | 4.387 | 4.760 ^{ED} | | $^{4}F_{7/2}$ | 2.141 | 2.454^{ED} | 2.396 | 2.342^{ED} | 2.205 | 2.236^{ED} | | $^{4}F_{5/2} + ^{2}F_{3/2}$ | 1.266 | 1.300 ^{ED} | 1.114 | 1.173 ^{ED} | 0.962 | 1.056 ^{ED} | | $^{2}G_{9/2}$ | 0.898 | 0.970^{ED} | 0.637 | 0.902^{ED} | 0.603 | 0.840^{ED} | | ${}^{4}G_{11/2} + {}^{2}K_{15/2} + {}^{4}G_{9/2} + {}^{2}G_{7/2}$ | 7.888 | $7.917^{\text{ED}} + 0.053^{\text{MD}}$ | 8.585 | $8.474^{\mathrm{ED}} + 0.053^{\mathrm{MD}}$ | 11.400 | $\frac{11.168^{\rm ED}}{0.055^{\rm MD}} +$ | | r.m.s. dev. | | 0.217 | | 0.137 | | 0.234 | $^{^{}a}f_{\rm exp}$ and $f_{\rm calc}$ - experimental and calculated absorption oscillator strengths, respectively, ED – electric dipole, MD – magnetic dipole. The J-O (intensity) parameters Ω_2 , Ω_4 , Ω_6 for Er^{3+} ions in MF $_2$ crystals are listed in Table 2. | Table 2. dud-Oleit Farameters of Li Hons in Mi 2 Crystals | | | | | | | |-----------------------------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|--|--|--| | Host crystal | Ω_2 , 10^{-20} cm ² | Ω_4 , 10^{-20} cm ² | Ω_6 , 10^{-20} cm ² | | | | | CaF ₂ | 1.436 | 1.364 | 1.892 | | | | | (Ca,Sr)F ₂ | 1.244 | 1.483 | 1.720 | | | | | SrF_2 | 1.477 | 1.701 | 1.701 | | | | | (Sr,Ba)F ₂ | 1.519 | 1.836 | 1.529 | | | | | BaF_2 | 2.397 | 1.964 | 1.487 | | | | Table 2. Judd-Ofelt Parameters of \mbox{Er}^{3+} lons in \mbox{MF}_2 Crystals The determined J-O parameters were used to calculate the probabilities of spontaneous radiative transitions of Er^{3+} ions. In Table 3, we list the parameters relevant for mid-infrared laser operation, i.e., the radiative lifetimes τ_{rad} of the $^4I_{13/2}$ and $^4I_{11/2}$ states and the luminescence branching ratio $\beta_{JJ'}$ for the $^4I_{11/2} \rightarrow ^4I_{13/2}$ transition. As expected, in the $M=Ca \rightarrow Sr \rightarrow Ba$ series, the τ_{rad} values for the considered excited-states tend to increase from 7.09 / 6.53 ms (Er $^{3+}$:CaF $_2$) to 7.57 / 6.99 ms (Er $^{3+}$:SrF $_2$) and further to 7.52 / 7.11 ms (Er $^{3+}$:BaF $_2$). The considered $\beta_{JJ'}$ value is also higher for Sr $^{2+}$ and Ba $^{2+}$ -containing crystals. #### 4.3. Emission spectra and luminescence lifetimes The luminescence spectra of Er^{3+} ions in the mid-infrared (the $^4I_{11/2} \rightarrow ^4I_{13/2}$ transition) were measured using an optical spectrum analyzer (OSA, Yokogawa AQ6376) and a ZrF₄ fiber. The excitation source was a Ti:Sapphire laser tuned to ~970 nm. The OSA was purged with N₂ gas. | Table 3. | Selected Probabilities ^a of Spontaneous Radiative Transitions of | |----------|-----------------------------------------------------------------------------| | | Er ³⁺ in MF ₂ crystals | | Host crystal | $ au_{\rm rad}(^{4}{ m I}_{13/2}),{ m ms}$ | $ au_{rad}(^{4}I_{11/2})$, ms | $\beta_{\rm JJ'}(^4{\rm I}_{11/2}\longrightarrow {}^4{\rm I}_{13/2}), \%$ | |------------------|--------------------------------------------|--------------------------------|---------------------------------------------------------------------------| | CaF ₂ | 7.09 | 6.53 | 14.9 | | $(Ca,Sr)F_2$ | 7.64 | 7.06 | 15.8 | | SrF_2 | 7.57 | 6.99 | 16.0 | | $(Sr,Ba)F_2$ | 7.90 | 7.56 | 16.5 | | BaF_2 | 7.52 | 7.11 | 16.1 | $^{^{}a}\tau_{\rm rad}$ – radiative lifetime, $\beta_{\rm JJ'}$ – luminescence branching ratio. To remove the effect of the residual water vapor absorption in air, the set-up was calibrated using a 20 W quartz iodine lamp. The stimulated-emission (SE) cross-sections, σ_{SE} , were calculated using the Füchtbauer-Ladenburg equation [39]: $$\sigma_{SE}(\lambda) = \frac{\lambda^5}{8\pi \langle n \rangle^2 \tau_{\text{rad}} c} \frac{B(JJ')W'(\lambda)}{\int \lambda W'(\lambda) d\lambda},\tag{1}$$ where λ is the light wavelength, $\langle n \rangle$ is the refractive index of the crystal at the mean emission wavelength, $\tau_{\rm rad}$ corresponds to the ${}^4{\rm I}_{11/2}$ state and $\beta_{\rm JJ'}$ – to the ${}^4{\rm I}_{11/2} \to {}^4{\rm I}_{13/2}$ transition (cf. Table 3), c is the speed of light, and $W'(\lambda)$ is the measured luminescence spectrum corrected for the response of the set-up. The SE cross-section spectra for Er^{3+} ions in MF_2 crystals are shown in Fig. 5. Similarly to the absorption spectra, a profound inhomogeneous broadening is observed for both the parent and "mixed" Er^{3+} : MF_2 crystals owing to the rare earth ion clustering. For all the studied crystals, the emission spectra are very broad extending from 2.55 to 3.05 μ m and the main emission peak appears around 2.72 μ m. Such a behavior is beneficial for broadly tunable and potentially mode-locked lasers. The spectra become more structured in the $M = Ca \rightarrow Sr \rightarrow Ba$ series. Also for the solid-solution compounds, a great similarity between the emission spectra of $(Er^{3+}:(Ca,Sr)F_2$ and $Er^{3+}:SrF_2)$ and $(Er^{3+}:(Sr,Ba)F_2$ and $Er^{3+}:BaF_2)$ crystals is observed. **Fig. 5.** Stimulated-emission (SE) cross-sections, σ_{SE} , for the $^4I_{11/2} \rightarrow ^4I_{13/2}$ Er³⁺ transition in MF₂ crystals, corrected for the structured water vapor absorption in air (in *grey*, arb. units, according to the HITRAN database). The highest SE cross-section is observed for Er³⁺:SrF₂, σ_{SE} = 7.19 × 10⁻²¹ cm² at 2729 nm and at longer wavelengths, two other intense and broad peaks appear (σ_{SE} = 6.38 × 10⁻²¹ cm² at 2745 nm and 4.69 × 10⁻²¹ cm² at 2794 nm). Luminescence decays were studied under resonant excitation using a ns optical parametric oscillator (Horizon, Continuum), a 1/4 m monochromator (Oriel 77200), an InGaAs detector and an 8 GHz oscilloscope (DSA70804B, Tektronix). To reduce the reabsorption (radiation trapping) effect on the measured kinetics, the samples were finely ground into powders. The measured luminescence decay curves from the ${}^4I_{13/2}$ and ${}^4I_{11/2}$ Er^{3+} states in the three parent crystals, CaF_2 , SrF_2 and BaF_2 , are shown in Fig. 6(a). They deviate from the single-exponential law (especially for ${}^4I_{13/2}$) owing to the strong ETU from these long-living states. Thus, the mean luminescence lifetimes $<\tau_{lum}>=\int t\cdot I(t)dt/\int I(t)dt$ were determined. **Fig. 6.** Luminescence dynamics from the $^4I_{13/2}$ and $^4I_{11/2}$ Er $^{3+}$ manifolds in MF₂ crystals: (a) luminescence decay curves under resonant excitation of Er $^{3+}$ ions in CaF₂, SrF₂, and BaF₂, $\lambda_{exc} = 1.48 \, \mu m$, $\lambda_{lum} = 1.57 \, \mu m$ (the $^4I_{13/2}$ state), $\lambda_{exc} = 0.97 \, \mu m$, $\lambda_{lum} = 1.01 \, \mu m$ (the $^4I_{11/2}$ state); (b) mean luminescence lifetimes $<\tau_{lum}>$ as a function of the host composition. The summary of the $<\tau_{lum}>$ values for the five studied Er^{3+} :MF₂ crystals is given in Fig. 6(b). With increasing the average radius / atomic mass of the M²⁺ host-forming cations (in the M = Ca \rightarrow Sr \rightarrow Ba series), and, accordingly, decreasing the phonon energy of the host matrix, both the $^4I_{13/2}$ and $^4I_{11/2}$ luminescence lifetimes tend to increase, from 8.06 / 8.85 ms (Er^{3+} :CaF₂) to 8.54 / 9.55 ms (Er^{3+} :SrF₂) and further to 9.17 / 10.36 ms (Er^{3+} :BaF₂). This behavior agrees with that for the calculated radiative lifetimes of these manifolds. The ratio of the upper-to-lower laser level lifetimes is favorable for all the studied crystals being weakly dependent on the host matrix composition. The long luminescence lifetime of the upper laser level for the mid-infrared transition ($^4I_{11/2}$) is a prerequisite for a low-threshold behavior. Note that the measured luminescence lifetimes are slightly exceeding the radiative ones calculated using the J-O theory (cf. Table 3). One possible reason for that is the residual reabsorption effect within the Er³⁺ ion clusters. Table 4 summarizes the key spectroscopic properties of Erbium ions in fluorite-type crystals being relevant for mid-infrared laser operation. #### 4.4. Low-temperature spectroscopy For low-temperature (LT, 12 K) absorption and luminescence studies, we have used an APD DE-202 closed-cycle cryo-cooler equipped with an APD HC 2 Helium vacuum cryo-compressor and a Laceshore 330 temperature controller. For absorption measurements, a 20 W quartz lamp with a calibrated spectral output was used. The spectra were measured using optical spectrum analyzers (Ando AQ6315A and Yokogawa AQ6375E). The luminescence was excited by a Ti:Sapphire laser tuned to ~ 800 nm. The LT absorption and emission spectra are shown in Fig. 7 and Fig. 8, respectively. In each graph, we compare the spectrum of a "mixed" compound with those of both parent crystals. The LT absorption spectra were lotted versus the photon energy giving access to the splitting of the $^4\mathrm{I}_{13/2}$ and $^4\mathrm{I}_{11/2}$ excited-states, while the LT emission spectra were plotted versus (E_{ZPL} – photon energy), where E_{ZPL} is the zero-phonon line (ZPL) energy giving access to the splitting of the ground-state $^4\mathrm{I}_{15/2}$. **Fig. 7.** (a-d) LT (12 K) absorption spectra of Er^{3+} ions in fluorite-type crystals: (a,b) the ${}^4I_{15/2} \rightarrow {}^4I_{13/2}$ transition; (c,d) ${}^4I_{15/2} \rightarrow {}^4I_{11/2}$ transition. α_{abs} – absorption coefficient. **Fig. 8.** (a-d) LT (12 K) luminescence spectra of Er^{3+} ions in fluorite-type crystals: (a,b) the $^4I_{13/2} \rightarrow ^4I_{15/2}$ transition; (c,d) $^4I_{11/2} \rightarrow ^4I_{15/2}$ transition. E_{ZPL} – zero-phonon-line energy. By analyzing the spectra, several conclusions can be derived: - (i) The absorption and emission spectra of Er^{3+} ions in MF_2 crystals contain very broad bands even at 12 K indicating a significant inhomogeneous spectral broadening due to the rare-earth ion clustering. The spectra become more structured in the series $M = Ca \rightarrow Sr \rightarrow Ba$ indicating smaller variety of cluster geometries; - (ii) The spectra of "mixed" fluorite-type crystals exhibit additional broadening as compared to the corresponding parent compounds due to the presence of two different host-forming cations. The spectra of such "mixed" crystals are more similar to those of the heavier-cation parent (e.g., $(Ca,Sr)F_2$ and SrF_2 , $(Ba,Sr)F_2$ and BaF_2). This corroborates the observation made in Section 4.3, confirming that the majority of Er^{3+} ions tend to reside in the vicinity of heavier cations within "mixed" crystals; - (iii) The total Stark splitting of Er^{3+} multiplets in clusters in MF_2 crystals decreases in the $M = Ca \rightarrow Sr \rightarrow Ba$ series, and the corresponding barycenter energies experience a progressive red-shift. The strength of the crystal-field is expected to be larger for smaller sites (shorter M F and M M distances, in our case) due to the stronger lattice distortion on the dopant ion. Indeed, the lattice constant increases in the series CaF_2 (5.45 Å) \rightarrow SrF_2 (5.80 Å) \rightarrow BaF_2 (6.20 Å). Based on the LT absorption and emission spectra, the crystal-field splitting of the ${}^4I_{15/2}$, ${}^4I_{13/2}$ and ${}^4I_{11/2}$ multiplets of Er^{3+} ions forming clusters in the three parent MF2 crystals (M = Ca, Sr, Ba), was determined, Table 5. The experimental Stark splitting of the ${}^4I_{11/2}$ and ${}^4I_{13/2}$ multiplets relevant for the 2.8 µm laser operation is also compared in Fig. 9. In the previous studies on site-selective spectroscopy of Er^{3+} ions in CaF_2 crystals grown under oxygen-free atmosphere, multiple possible sites were identified [40–42]. At very low doping levels (<0.05 at.%), the Er^{3+} ions are mostly isolated and are distributed over tetragonal (A, C_{4v}), trigonal (B, C_{3v}) and cubic (O_h) sites, depending on the relative position of the charge-compensating interstitial fluorine anion (F_i^-), namely at the (1,0,0) positions, at the (1,1,1) positions or sufficiently far from the dopant ion to exert negligible perturbation, respectively [40]. For higher doping levels of >0.1 at.%, the dopant ions form clusters of several types (assigned as C-sites, being close to dimers with a distorted C_{3v} symmetry, and D(1) and D(2) sites corresponding to larger agglomerates of Er^{3+} - F_i^- pairs). **Fig. 9.** Experimental Stark splitting of the ${}^4I_{11/2}$ and ${}^4I_{13/2}$ multiplets of Er^{3+} ions forming clusters in heavily doped Er^{3+} :MF₂ crystals. For the studied heavily doped Er^{3+} :MF₂ crystals, we were not able to confirm the existence of two significantly different groups of ion clusters (D(1) and D(2)), as the LT emission spectra were almost independent on the excitation wavelength. Moreover, the bands in the LT spectra of ~5 at.% Er^{3+} -doped crystals (assigned to a single type of cluster D sites) experience an additional broadening and spectral shifts as compared to those in 0.1 at.% Er^{3+} -doped crystals (assigned to D(1) and D(2) sites). Thus, we assumed that almost all the Er^{3+} ions form large-scale agglomerates Table 4. Spectroscopic Characteristics^a of Er³⁺:MF₂ Crystals | Parameter / Crystal | CaF_2 | $(Ca,Sr)F_2$ | SrF_2 | $(Sr,Ba)F_2$ | BaF_2 | |----------------------------------------------------|---------|--------------|---------|--------------|---------| | λ_{abs} , nm | 967.6 | 969.7 | 969.5 | 971.4 | 972.3 | | σ_{abs} , $10^{-21}~\mathrm{cm}^2$ | 2.22 | 2.91 | 2.59 | 3.04 | 2.77 | | λ_{em} , nm | 2724.8 | 2727.6 | 2728.9 | 2726.6 | 2726.5 | | $\sigma_{\rm SE}$, $10^{-21}~{\rm cm}^2$ | 5.87 | 6.90 | 7.22 | 7.11 | 6.92 | | $<\tau_{\text{lum}}>(^{4}I_{13/2}), \text{ ms}$ | 8.06 | 9.53 | 8.54 | 9.26 | 9.17 | | $<\tau_{\text{lum}}>(^{4}I_{11/2}), \text{ ms}$ | 8.85 | 9.43 | 9.55 | 10.26 | 10.36 | $[^]a\lambda_{\rm abs}$, $\lambda_{\rm em}$ – peak absorption / emission wavelengths, respectively, $\sigma_{\rm abs}$, $\sigma_{\rm SE}$ – peak absorption / SE cross-sections, respectively, $<\tau_{\rm lum}>$ - average luminescence lifetime. Table 5. Crystal-Field Splitting of Selected Er3+ Multiplets in CaF2, SrF2, and BaF2 | Crystal | Er ³⁺ | + Sub-level / Energy (cm ⁻¹) | | | | | | | | |------------------|------------------|------------------------------------------|-------|-------|-------|-------|-------|------|-----| | | $^{2S+1}L_{J}$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | | CaF ₂ | $^{4}I_{15/2}$ | 0 | 42 | 90 | 110 | 186 | 228 | 346 | 387 | | | $^{4}I_{13/2}$ | 6516 | 6579 | 6602 | 6648 | 6708 | 6793 | 6812 | | | | $^{4}I_{11/2}$ | 10215 | 10248 | 10320 | 10331 | 10360 | 10386 | | | | SrF_2 | $^{4}I_{15/2}$ | 0 | 25 | 63 | 75 | 148 | 187 | 283 | 330 | | | $^{4}I_{13/2}$ | 6501 | 6572 | 6589 | 6622 | 6669 | 6737 | 6796 | | | | $^{4}I_{11/2}$ | 10196 | 10204 | 10282 | 10307 | 10321 | 10373 | | | | BaF ₂ | $^{4}I_{15/2}$ | 0 | 18 | 34 | 48 | 117 | 142 | 222 | 293 | | | $^{4}I_{13/2}$ | 6489 | 6569 | 6590 | 6622 | 6672 | 6730 | 6784 | | | | $^{4}I_{11/2}$ | 10182 | 10190 | 10252 | 10295 | 10321 | 10363 | | | (D) with relatively close spectroscopic properties. Previously, it was suggested that for all the heavily doped MF₂ crystals (M = Ca, Sr, Ba) and their solid-solutions, such agglomerates most likely correspond to hexameric Y_6F_{37} superstructure units, which are nearly identical in volume and shape to the Ca_2F_{32} building blocks of the fluorite lattice and, consequently, they can be easily incorporated into this lattice while accommodating the excess F_i^- anions [5,43]. The local crystal-field symmetry for the dopant ions in Y_6F_{37} clusters is tetragonal (C_{4v}) [5]. The analysis of Table 2 confirms a decreased total Stark splitting of the multiplets and a red-shift of the zero-phonon line for Er^{3+} ions in the $M = Ca \rightarrow Sr \rightarrow Ba$ series. #### 5. Laser operation #### 5.1. Laser setup The scheme of the laser set-up is shown in Fig. 10. Cylindrical samples with a thickness of 6.53-6.99 mm and a diameter of \sim 7 mm were cut from the central parts of the as-grown Er³+:MF² crystal boules. They were polished to laser-grade quality with good parallelism (<5') from both sides and left uncoated. The laser elements were mounted on a passively cooled Cu-holder using a silver paint for better heat removal. A hemispherical cavity was implemented. It was formed by a flat pump mirror (PM) coated for high transmission (HT, T = 85.7%) at 0.97 μ m and high reflection (HR) at 2.6–3.0 μ m, and a set of concave (radius of curvature: RoC = -100 mm) output couplers (OC) having a transmission T_{OC} in the range of 0.33% - 4% at 2.7–2.9 μ m. The crystal was placed near the PM at a small distance (<1 mm). The geometrical cavity length was \sim 99 mm. The pump source was a CW Ti:Sapphire laser delivering up to 3.2 W at 0.97 μ m (addressing the $^4I_{15/2} \rightarrow ^4I_{11/2}$ Er³+ absorption peak) with a diffraction-limited beam quality (M² \approx 1). The pump radiation was focused into the laser crystal through the PM using an antireflection-coated achromatic lens (focal length: f = 75 mm) resulting in a pump spot size of $2w_P = 66 \pm 5$ µm. The pumping was in single pass. The residual (non-absorbed) pump after the OC was filtered out using a long-pass filter (Spectrogon, LP1400). The laser spectra were measured using a ZrF₄ fiber (Thorlabs) and a spectrum analyzer (Bristol, 771 series). The laser mode profile in the far-field was captured using a camera (Pyrocam IIIHR, Ophir-Spiricon). **Fig. 10.** Schematic of the laser setup: L – aspherical focusing lens; PM – flat pump mirror; OC – curved output coupler. #### 5.2. Laser performance CW mid-infrared laser operation was obtained with all five studied $Er^{3+}:MF_2$ crystals. The best laser performance was achieved with the $Er^{3+}:CaF_2$ crystal: an output power of 702 mW was extracted at 2800 nm with a slope efficiency η of 37.9% (vs. the absorbed pump power) when using the output coupler with $T_{OC}=4\%$, Fig. 11(a). With increasing output coupling from 0.33% to 4%, the laser threshold gradually increased from 16 mW to 60 mW. For $Er^{3+}:CaF_2$, the measured pump absorption reached 81.9%. The optical-to-optical efficiency (vs. the pump power incident on the crystal) η_{opt} was 31.0%. The output dependences were linear within the studied range of pump powers. Further power scaling was limited by the available pump. The achieved laser slope efficiency is slightly higher than the Stokes limit, $\eta_{St,L}=\lambda_P/\lambda_L=34.6\%$, indicating the role of the ETU process ${}^4I_{13/2}+{}^4I_{13/2}\to {}^4I_{9/2}+{}^4I_{15/2}$, cf. Figure 1, refilling the upper laser level and depopulating the intermediate ${}^4I_{13/2}$ state. The typical emission spectra of the Er^{3+} : CaF_2 laser are shown in Fig. 11(b), measured well above the laser threshold. For small output coupling (<1%), laser emission at 2810 and 2814 nm was observed and for higher T_{OC} , the laser operated at 2800 nm. These wavelengths correspond to the long-wave emission peak of Er^{3+} ions in CaF_2 and match the transparency ranges between the structured water vapor absorption lines (cf. Figure 5). Note that due to strong resonant excited-state absorption from the terminal laser level with a non-negligible population, $^4I_{13/2} \rightarrow ^4I_{11/2}$, causing reabsorption of the laser photons, the $^4I_{11/2} \rightarrow ^4I_{13/2}$ Er^{3+} laser transition represents a quasi-three-level laser scheme with reabsorption, which explains the blue-shift of the laser spectra with increasing the output coupling. The Er^{3+} : CaF_2 laser operated on the fundamental transverse mode, as confirmed by the measured $M^2 < 1.1$, and the beam profile in the far-field was nearly circular, see the inset in Fig. 11(a). The output performance and laser spectra of five $Er^{3+}:MF_2$ crystals are directly compared in Fig. 11(c,d) using the same output coupling ($T_{OC}=1.7\%$). The slope efficiency gradually decreased in the sequence $Er^{3+}:CaF_2 \rightarrow Er^{3+}:SrF_2$ and Sr-containing crystals $\rightarrow Er^{3+}:BaF_2$, while the laser threshold was in the range of 17–28 mW for all the crystals, being only slightly higher for Ba-containing ones. The laser emission occurred at 2792–2800 nm, except of $Er^{3+}:SrF_2$ for which the laser operated at shorter wavelengths, 2730 and 2747 nm. The output characteristics of mid-infrared $Er^{3+}:MF_2$ lasers are summarized in Table 6. More details about the 2.8 μ m laser performance of Ba-containing crystals can be found in [44]. **Fig. 11.** Mid-infrared Er^{3+} :MF₂ lasers: (a,b) Er^{3+} :CaF₂ laser: (a) input-output dependences, η – slope efficiency, *inset* – far-field mode profile, $P_{abs} \sim 1.5$ W, $T_{OC} = 1.7\%$; (b) typical laser spectra; (c,d) a comparison of (c) power transfer characteristics and (d) laser spectra for five Er^{3+} :MF₂ crystals, $T_{OC} = 1.7\%$. Table 6. Output Characteristics a of Mid-Infrared $\text{Er}^{3+}\text{:MF}_2$ Lasers (T_OC = 1.7%) | Parameter / Crystal | CaF ₂ | (Ca,Sr)F ₂ | SrF ₂ | (Sr,Ba)F ₂ | BaF ₂ | |-----------------------------|------------------|-----------------------|------------------|-----------------------|------------------| | t, mm | 6.81 | 6.99 | 6.53 | 6.99 | 6.66 | | λ_{P} , nm | 967.8 | 969.7 | 969.5 | 971.4 | 971.2 | | $\eta_{ m abs},\%$ | 81.9 | 84.3 | 76.1 | 83.3 | 83.8 | | P _{out} , mW | 596 | 466 | 443 | 519 | 350 | | λ_{L} , nm | 2800 | 2796 | 2747 | 2794 | 2792 | | $P_{\rm th}$, mW | 20 | 17 | 20 | 28 | 26 | | η , % | 30.4 | 24.8 | 23.5 | 25.0 | 17.2 | | | | | | | | $[^]at$ – crystal thickness, $\lambda_{\rm P}$ - pump wavelength, $\eta_{\rm abs}$ – pump absorption under lasing conditions, $P_{\rm out}$ - output power, $\lambda_{\rm L}$ – laser wavelength, $P_{\rm th}$ – laser threshold, η – slope efficiency. #### 6. Conclusions Fluorite-type $Er^{3+}:MF_2$ parent and solid-solution crystals feature low-phonon-energy behavior, very broad absorption and mid-infrared emission spectral bands, owing to the profound Er^{3+} ion clustering and long $^4I_{11/2}$ and $^4I_{13/2}$ luminescence lifetimes. As for the "mixed" compounds, their advantage is the lower melting points with respect to the corresponding parents. Considering the high thermal conductivity of these materials, the $Er^{3+}:MF_2$ crystals are very promising for the development of power-scalable and broadly tunable low-threshold mid-infrared lasers emitting at $\sim 2.8 \, \mu m$. Based on a detailed comparative spectroscopic study of five 5 at.% $Er^{3+}:MF_2$ fluorite-type crystals, including the parent compounds CaF_2 , SrF_2 , BaF_2 , and "mixed" ones, $(Ca,Sr)F_2$ and $(Sr,Ba)F_2$, the following conclusions are derived: - (i) The phonon energy of Er^{3+} : MF_2 crystals monotonously decreases with the square root of the M^{2+} cationic mass, from $321 \, \mathrm{cm}^{-1}$ (Er^{3+} : CaF_2) to $242 \, \mathrm{cm}^{-1}$ (Er^{3+} : BaF_2). Such a low-phonon energy behavior is a prerequisite for almost vanishing multiphonon non-radiative path from both the $^4I_{11/2}$ and $^4I_{13/2}$ Er^{3+} manifolds, as confirmed by the luminescence decay studies and the Judd-Ofelt analysis yielding the radiative lifetimes; - (ii) In the $M = Ca \rightarrow Sr \rightarrow Ba$ series, the absorption and mid-infrared emission spectra gradually become narrower and more structured, which is linked to the decreasing complexity of Er^{3+} clusters, and the luminescence lifetimes of the $^4I_{13/2}$ / $^4I_{11/2}$ Er^{3+} manifolds increase, from 8.06 / 8.85 ms (Er^{3+} : CaF_2) to 9.17 / 10.36 ms (Er^{3+} : BaF_2) because of a decrease in the crystal field strength. The observed ratio of the upper-to-lower laser level lifetimes and their values are favorable for low-threshold mid-infrared laser operation; - (iii) The Er³⁺ ions in "mixed" crystals tend to reside in a local environment predominantly composed of the larger / heavier M²⁺ cations, leading to a great similarity between the spectra of Er³⁺:SrF₂ and Er³⁺:(Ca,Sr)F₂, Er³⁺:BaF₂ and Er³⁺:(Sr,Ba)F₂. At LT, the spectra of Er³⁺ ions in solid-solution crystals exhibit a notable inhomogeneous broadening; - (iv) For the doping level of 5 at.% Er^{3+} in MF₂ crystals, the LT spectroscopy reveals the existence of a single class of Er^{3+} clusters with rather close absorption / emission properties (D centers), contrary to crystals with low doping levels subject to ion clustering of various nature (D(1) and D(2)). In the present work, we employed high-brightness pumping to reveal the potential of $Er^{3+}:MF_2$ crystals for efficient lasing at ~2.8 μm . Further power scaling is envisioned by using powerful InGaAs laser diodes as pump sources which is feasible owing to the good thermal properties of these compounds. Further improvement of the slope efficiency, especially for Sr and Bacontaining crystals should involve an optimization of the Er^{3+} doping level for boosting the ETU efficiency. One hypothesis here is that a reduction in the cluster complexity may lead to weaker energy-transfer processes. Another idea is the Er^{3+},Pr^{3+} codoping for quenching the metastable Er^{3+} lower-laser level ($^4I_{13/2}$). **Funding.** Contrat de Plan État-Région(CPER) de Normandie 2021-2027; Région Normandie (Chair of Excellence project, RELANCE); Agence Nationale de la Recherche (ANR-19-CE08-0028, SPLENDID2). **Disclosures.** The authors declare no conflicts of interest. **Data availability.** Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request. #### References C. Labbe, J. L. Doualan, P. Camy, R. Moncorgé, and M. Thuau, "The 2.8 μm laser properties of Er³⁺ doped CaF₂ crystals," Opt. Commun. 209(1-3), 193–199 (2002). ## F. Druon, S. Ricaud, D. N. Papadopoulos, A. Pellegrina, P. Camy, J. L. Doualan, R. Moncorgé, A. Courjaud, E. Mottay, and P. Georges, "On Yb:CaF₂ and Yb:SrF₂: review of spectroscopic and thermal properties and their impact - on femtosecond and high power laser performance," Opt. Mater. Express 1(3), 489–502 (2011). P. Camy, J. L. Doualan, S. Renard, A. Braud, V. Ménard, and R. Moncorgé, "Tm³⁺: CaF₂ for 1.9 μm laser operation," Opt. Commun. 236(4-6), 395–402 (2004). - V. Petit, P. Camy, J.-L. Doualan, X. Portier, and R. Moncorgé, "Spectroscopy of Yb³⁺:CaF₂: from isolated centers to clusters," Phys. Rev. B 78(8), 085131 (2008). - S. A. Kazanskii and A. I. Ryskin, "Group-III Ion Clusters in Activated Fluorite-Like Crystals," Phys. Solid State 44(8), 1415–1425 (2002). - B. Lacroix, C. Genevois, J. L. Doualan, G. Brasse, A. Braud, P. Ruterana, P. Camy, E. Talbot, R. Moncorgé, and J. Margerie, "Direct imaging of rare-earth ion clusters in Yb:CaF₂," Phys. Rev. B 90(12), 125124 (2014). - V. Petit, J. L. Doualan, P. Camy, V. Ménard, and R. Moncorgé, "CW and tunable laser operation of Yb³⁺ doped CaF₂," Appl. Phys. B 78(6), 681–684 (2004). - R. Thouroude, A. Tyazhev, A. Hideur, P. Loiko, P. Camy, J. L. Doualan, H. Gilles, and M. Laroche, "Widely tunable in-band-pumped Tm:CaF₂ laser," Opt. Lett. 45(16), 4511–4514 (2020). - G. Machinet, P. Sevillano, F. Guichard, R. Dubrasquet, P. Camy, J. L. Doualan, R. Moncorgé, P. Georges, F. Druon, D. Descamps, and E. Cormier, "High-brightness fiber laser-pumped 68 fs-2.3 W Kerr-lens mode-locked Yb:CaF₂ oscillator," Opt. Lett. 38(20), 4008–4010 (2013). - A. Lucca, G. Debourg, M. Jacquemet, F. Druon, F. Balembois, P. Georges, P. Camy, J. L. Doualan, and R. Moncorge, "High-power diode-pumped Yb³⁺:CaF₂ femtosecond laser," Opt. Lett. 29(23), 2767–2769 (2004). - 11. P. Loiko, A. Braud, L. Guillemot, J.L. Doualan, A. Benayad, and P. Camy, "Cross-relaxation and ion clustering in Tm3+:CaF2 crystals," Proc. SPIE 11357, 23 (2020). - P. Camy, J. L. Doualan, A. Benayad, M. Von Edlinger, V. Ménard, and R. Moncorgé, "Comparative spectroscopic and laser properties of Yb³⁺-doped CaF₂, SrF₂ and BaF₂ single crystals," Appl. Phys. B 89(4), 539–542 (2007). - S. Bordj, H. Satha, A. Barros, D. Zambon, J. P. Jouart, M. Diaf, and M. and , and R. Mahiou, "Spectroscopic characterization by up conversion of Ho³⁺/Yb³⁺ codoped CdF₂ single crystal," Opt. Mater. (Amsterdam, Neth.) 118, 111249 (2021). - M. Zhou, P. Zhang, X. Niu, J. Liao, Q. Chen, S. Zhu, Y. Hang, Q. Yang, H. Yin, Z. Li, and Z. Chen, "Ultra-broadband and enhanced near-infrared emission in Bi/Er co-doped PbF₂ laser crystal," J. Alloys Compd. 895, 162704 (2022). - 15. W. Z. Xue, Z. L. Lin, H. J. Zeng, G. Zhang, P. Loiko, L. Basyrova, A. Benayad, P. Camy, V. Petrov, X. Mateos, L. Wang, and W. Chen, "Diode-pumped mode-locked Yb:BaF₂ laser," Opt. Express 30(9), 15807–15818 (2022). - S. V. Kuznetsov, V. A. Konyushkin, A. N. Nakladov, E. V. Chernova, P. A. Popov, A. A. Pynenkov, K. N. Nishchev, and P. P. Fedorov, "Thermophysical properties of single crystals of CaF₂–SrF₂–RF₃ (R = Ho, Pr) fluorite solid solutions," Inorg. Mater. 56(9), 975–981 (2020). - 17. P. P. Fedorov, I. I. Buchinskaya, N. A. Ivanovskaya, V. V. Konovalova, S. V. Lavrishchev, and B. P. Sobolev, "CaF₂-BaF₂ phase diagram," Dokl. Phys. Chem. **401**(4-6), 53–55. Nauka/Interperiodica (2005). - P. A. Popov, A. A. Krugovykh, V. A. Konyushkin, A. N. Nakladov, S. V. Kuznetsov, and P. P. Fedorov, "Thermal Conductivity of Sr_{1-x}Ba_xF₂ Single Crystals," Inorg. Mater. 57(6), 629–633 (2021). - D. Klimm, M. Rabe, R. Bertram, R. Uecker, and L. Parthier, "Phase diagram analysis and crystal growth of solid solutions Ca_{1-x}Sr_xF₂," J. Cryst. Growth 310(1), 152–155 (2008). - 20. R. H. Nafziger, "High-Temperature Phase Relations in the System BaF2-SrF2," J. Am. Ceram. Soc. 54(9), 467 (1971). - 21. J. L. Doualan, P. Camy, A. Benayad, V. Ménard, R. Moncorgé, J. Boudeile, F. Druon, F. Balembois, and P. Georges, "Yb³⁺ doped (Ca,Sr,Ba)F₂ for high power laser applications," Laser Phys. 20(2), 533–536 (2010). - K. Veselský, J. Šulc, H. Jelínková, M. E. Doroshenko, V. A. Konyushkin, and A. N. Nakladov, "Spectroscopic and laser properties of a broadly tunable diode-pumped Tm³⁺:CaF₂-SrF₂ laser," Laser Phys. Lett. 17(2), 025802 (2020). - 23. J. Liu, X. Feng, X. Fan, Z. Zhang, B. Zhang, J. Liu, and L. Su, "Efficient continuous-wave and passive Q-switched mode-locked Er³⁺:CaF₂–SrF₂ lasers in the mid-infrared region," Opt. Lett. 43(10), 2418–2421 (2018). - B. J. Dinerman and P. F. Moulton, "3-μm cw laser operations in erbium-doped YSGG, GGG, and YAG," Opt. Lett. 19(15), 1143–1145 (1994). - G. A. Newburgh and M. Dubinskii, "Power and efficiency scaling of Er:ZBLAN fiber laser," Laser Phys. Lett. 18(9), 095102 (2021). - L. Basyrova, P. Loiko, J. L. Doualan, A. Benayad, A. Braud, B. Viana, and P. Camy, "Thermal lensing, heat loading and power scaling of mid-infrared Er:CaF₂ lasers," Opt. Express 30(5), 8092–8103 (2022). - M. Zong, Y. Wang, Z. Zhang, J. Liu, L. Zhao, J. Liu, and L. Su, "High-power 2.8 μm lasing in a lightly-doped Er: CaF₂ crystal," J. Lumin. 250, 119089 (2022). - 28. R. Švejkar, J. Šulc, H. Jelínková, V. Kubeček, W. Ma, D. Jiang, Q. Wu, and L. Su, "Diode-pumped Er:SrF₂ laser tunable at 2.7 µm," Opt. Mater. Express 8(4), 1025–1030 (2018). - J. Šulc, M. Němec, R. Švejkar, H. Jelínková, M. E. Doroshenko, P. P. Fedorov, and V. V. Osiko, "Diode-pumped Er:CaF₂ ceramic 2.7 μm tunable laser," Opt. Lett. 38(17), 3406–3409 (2013). - 30. J. P. Russell, "The Raman spectrum of calcium fluoride," Proc. Phys. Soc. 85(1), 194-199-2 (1965). - L. Su, J. Xu, W. Yang, X. Jiang, and Y. Dong, "Raman spectra of undoped and uranium doped CaF₂ single crystals," Chin. Opt. Lett. 3(4), 219–221 (2005). - 32. R. K. Chang, B. Lacina, and P. S. Pershan, "Raman scattering from mixed crystals (Ca_xSr_{1-x})F₂ and (Sr_xBa_{1-x})F₂," Phys. Rev. Lett. **17**(14), 755–758 (1966). - 33. A. Ubaldini and M. M. Carnasciali, "Raman characterisation of powder of cubic RE₂O₃ (RE = Nd, Gd, Dy, Tm, and Lu), Sc₂O₃ and Y₂O₃," J. Alloys Compd. **454**(1-2), 374–378 (2008). - 34. W. T. Carnall, P. R. Fields, and K. Rajnak, "Electronic energy levels in the trivalent lanthanide aquo ions. I. Pr^{3+} , Nd^{3+} , Pm^{3+} , Sm^{3+} , Dy^{3+} , Ho^{3+} , Er^{3+} , and Tm^{3+} ," J. Chem. Phys. **49**(10), 4424–4442 (1968). - 35. S. Normani, "Nd,Lu:CaF2 for high-energy lasers" (Doctoral dissertation, Normandie Université) (2017). - 36. B. R. Judd, "Optical Absorption Intensities of Rare-Earth Ions," Phys. Rev. 127(3), 750-761 (1962). - 37. G. S. Ofelt, "Intensities of Crystal Spectra of Rare-Earth Ions," J. Chem. Phys. 37(3), 511-520 (1962). - 38. P. A. Tanner, V. R. K. Kumar, C. K. Jayasankar, and M. F. Reid, "Analysis of spectral data and comparative energy level parametrizations for Ln³⁺ in cubic elpasolite crystals," J. Alloys Compd. 215(1-2), 349–370 (1994). - B. Aull and H. Jenssen, "Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections," IEEE J. Quantum Electron. 18(5), 925–930 (1982). - 40. J. B. Fenn Jr, J. C. Wright, and F. K. Fong, "Optical study of ion-defect clustering in CaF₂: Er³⁺," J. Chem. Phys. **59**(10), 5591–5599 (1973). - D. R. Tallant and J. C. Wright, "Selective laser excitation of charge compensated sites in CaF₂: Er³⁺," J. Chem. Phys. 63(5), 2074–2085 (1975). - 42. D. S. Moore and J. C. Wright, "Laser spectroscopy of defect chemistry in CaF₂: Er³⁺," J. Chem. Phys. **74**(3), 1626–1636 (1981). - 43. A. E. Nikiforov, A. Y. Zakharov, M. Y. Ugryumov, S. A. Kazanskii, A. I. Ryskin, and G. S. Shakurov, "Crystal fields of hexameric rare-earth clusters in fluorites," Phys. Solid State 47(8), 1431–1435 (2005). - 44. S. Normani, L. Basyrova, P. Loiko, A. Benayad, A. Braud, A. Hideur, and P. Camy, "Mid-infrared laser operation of Er³⁺-doped BaF₂ and (Sr,Ba)F₂ crystals," Opt. Lett. 48(2), 431–434 (2023).