Министерство образования Республики Беларусь Учреждение образования «Витебский государственный технологический университет»

УДК 548

№ ГР 20140988

«УТВЕРЖДАЮ» Проректор по научной работе

О научно-исследовательской работе

Инв №

ОТЧЕТ

-исследовательской

ча параметрое

тиранст Разработка методов определения параметров межконфигурационного ров пр. паностру. пыми ионами, 201 -ГБ 307 взаимодействия и параметров пространственного распределения электронной плотности наноструктурированных материалов, активированных редкоземельными ионами, по их оптическим спектрам

(Заключительный)

Научный руководитель

Начальник НИЧ

А.А.Корниенко

С.А.Беликов

Витебск, 2015г.

СПИСОК ИСПОЛНИТЕЛЕЙ

Научный руководитель

доктор физ.-мат. наук, профессор, г.н.с

15.12.2915 ASS дата, подпись

Корниенко Алексей Александрович (Введение, заключение, Раздел 8)

Исполнители:

кандидат физ.-мат. наук, доцент, в.н.с.

кандидат физ.-мат. наук, с.н.с.

JS`. 12. 2015 — ДЗ/— дата, подпись

Дунина Елена Брониславовна (Раздел 2,3,5)

15.12.2015

дата, подпись

Фомичёва Людмила Александровна (Раздел 4,6, 7)

15.12. 2015 Упраця дата, подпись Букин Юрий Алексеевич (Раздел 1)

H.C.

Нормоконтролёр

/5. 12 . 2015 дата, подпись

Ринейский Константин Николаевич

БІБЛІЯ ХЭКА УА «ВІЦЕВСКІ ДЗЯРЖАЎНЫ ТЭХНАЛАГІЧНЫ ВЕРСІТЭТ» ІНВ. №

РЕФЕРАТ

Отчет 113с., 37 табл., 2 рисунка, 74 источника. ГОЛЬМИЙ, СМЕШАННЫЕ ЛИТИЙ-КАЛИЕВЫЕ ФОСФАТНЫЕ СТЕКЛА, КGd(WO₄)₂, XPOM, ТЕРБИЙ, $Y_3Al_5O_{12}$, ИНТЕНСИВНОСТИ АБСОРБЦИОННЫХ ПЕРЕХОДОВ, КОНФИГУРАЦИОННОЕ ВЗАИМОДЕЙСТВИЕ

Объектом исследования являются кристаллы $KGd(WO_4)_2$, $Y_3Al_5O_{12}$, $Cs_2NaGdCl_6$, $Cs_2NaHoBr_6$, $Cs_2NaHoCl_6$ и стекла различного состава, активированные ионами трехвалентного гольмия, европия, тербия и самария.

Цель работы — установить значимость влияния возбужденных конфигураций на спектроскопические характеристики иона гольмия, европия, тербия и самария в стеклах различного состава и монокристаллах $KGd(WO_4)_2$, $Y_3Al_5O_{12}$, $Cs_2NaGdCl_6$, $Cs_2NaHoBr_6$, $Cs_2NaHoCl_6$. При этом будут решены следующие задачи: сделан вывод о наиболее адекватном приближении для описания экспериментальных результатов, определены параметры межконфигурационного взаимодействия для ионов европия, тербия и самария и по оптическим спектрам определены параметры пространственного распределения электронной плотности для ионов гольмия и тербия.

Установлено, что для иона гольмия, европия, тербия и самария более адекватный учет конфигурационного взаимодействия приводит к уменьшению среднеквадратичного отклонения вычисленных сил осцилляторов от экспериментальных на 45 — 98% по сравнению с приближением слабого конфигурационного взаимодействия. Таким образом, обычная практика применения приближения слабого конфигурационного взаимодействия для этих ионов кажется неоправданной.

Предсказываемые по разным теориям интенсивностей каналы люминесценции отличаются только для мультиплета 5S_2 иона гольмия в кристалле $KGd(WO_4)_2$. Сделан вывод о благоприятном канале генерации лазерного излучения в кристалле $KGd(WO_4)_2$, активированном ионами гольмия.

Впервые по оптическим спектрам определены параметры пространственного распределения электронной плотности (параметры ковалентности) $\gamma_{\sigma f}$, $\gamma_{\pi f}$ для иона гольмия и тербия в кристаллах с локальной кубической симметрией.

По результатам моделирования спектра ионов Cr^{3+} установлено, что «красные» линии в спектре люминесценции люминофоров на основе иттрий алюминиевого граната принадлежат ионам хрома, образующим два разных типа оптических центров. Для каждого оптического центра определены параметры кристаллического расщепления $10\mathrm{Dq}$ и параметры тригонального искажения.

Разработаны основные принципы модели передачи энергии между оптическими центрами на основе редкоземельных ионов.

Выдвинута гипотеза о том, что из-за специфики пространственного распределения электронной плотности в некоторых мультиплетах иона европия эти мультиплеты аномально сильно взаимодействуют с возбужденными конфигурациями с переносом заряда от лигандов ближайшего окружения. Без учета этого взаимодействия не возможно адекватно описать интенсивностные характеристики излучения и поглощения. Модель, разработанная авторами проекта согласно этой гипотезе, успешно применена учеными из Туниса и Испании для описания экспериментальных данных (T.Koubaa, M.Dammaka, M.C.Pujol, M.Aguilo, F.Diaz. Optical spectroscopy of Eu³⁺ ions doped in KLu(WO₄)₂ single crystals // Journal of Luminescence 168 (2015) 7–13).

СОДЕРЖАНИЕ

Введение
1 Влияние конфигурационного взаимодействия на интенсивностные
характеристики поглощения иона гольмия в лазерных фосфатных стеклах7
1.1 Основные принципы теории интенсивностей
1.2 Расчет спектроскопических характеристик иона гольмия в лазерных
фосфатных стеклах14
2 Предсказание люминесцентных характеристик иона гольмия в двойных
вольфраматах21
3 Теоретическое изучение оксифлюоридных стекол, активированных
европием
4 Определение параметров межконфигурационного взаимодействия и
параметров ковалентности по оптическим спектрам иона гольмия в оксидных
кристаллах
4.1 Выводы по разделам 1-4
5 Природа «красных» центров в фосфорах на основе иттрий алюминиевых
гранатов
5.1 Моделирование расщепления термов 3d-конфигурации в
кристаллическом поле симметрии C_{3V}
5.2 Результаты моделирования и сравнение с экспериментом65
6 Влияние возбужденных конфигураций на силы линий абсорбционных
переходов иона тербия в оксидных кристаллах
7 Определение параметров ковалентности иона Tb ³⁺ в эльпасолитах
методами оптической спектроскопии
7.1 Расчет волновых функций J=9 и J=10, преобразующихся по
неприводимым представлениям группы О _h 72
7.2 Расчет матричных элементов неприводимых единичных тензоров для
конфигурации 4f ⁸
7.3 Определение параметров ковалентности по оптическим спектрам94

Заключение		
от востинения источников в поставления источников		105
	4	
) -	•	1 - 1 - 1 - 1 - 1 - 1
66		
C/2,		
7		
S.		
Yalo		
0/4		
	24.	
	'AO	
	0/2.	
	400	
	12	2
		4
		700
		OCL