### МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

Учреждение образования «Витебский государственный технологический университет»

### ЭЛЕКТРОТЕХНИКА, АВТОМАТИКА И АВТОМАТИЗАЦИЯ ПРОИЗВОДСТВЕННЫХ ПРОЦЕССОВ

Рабочая тетрадь для студентов специальностей 1-50 01 01 «Производство текстильных материалов», 1-50 02 01 «Производство одежды, обуви и кожгалантерейных материалов», 1-54 01 01 «Метрология, стандартизация и сертификация» дневной и заочной форм обучения

#### Составители:

С. А. Клименкова, А. С. Соколова, А. М. Самусев

Рекомендовано к изданию редакционно-издательским советом УО «ВГТУ», протокол № 10 от 29.06.2022.

Электротехника, автоматика и автоматизация производственных процессов: рабочая тетрадь / сост. С. А. Клименкова, А. С. Соколова, А. М. Самусев. – Витебск: УО «ВГТУ», 2022. – 46 с.

В рабочей тетради приведены материалы, необходимые для выполнения лабораторных работ по дисциплине «Электротехника, автоматика и автоматизация производственных процессов». Издание предназначено для специальностей 1-50 01 01 «Производство текстильных материалов», 1-50 02 01 «Производство одежды, обуви и кожгалантерейных материалов», 1-54 01 01 «Метрология, стандартизация и сертификация» для дневной и заочной форм обучения.

УДК 621.3 (075.08)

### СОДЕРЖАНИЕ

| ЛАБОРАТОРНАЯ РАБОТА 1. ИССЛЕДОВАНИЕ ОСНОВНЫХ РЕЖИМОВ<br>РАБОТЫ ПРОСТЕЙШЕЙ ЭЛЕКТРИЧЕСКОЙ ЦЕПИ ПОСТОЯННОГО<br>ТОКА                                                        |         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| ЛАБОРАТОРНАЯ РАБОТА 2. ЭКСПЕРИМЕНТАЛЬНАЯ ПРОВЕРКА<br>МЕТОДА НЕПОСРЕДСТВЕННОГО ПРИМЕНЕНИЯ ЗАКОНОВ КИРХГОФ<br>ДЛЯ РАСЧЕТА СЛОЖНЫХ ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ ПОСТОЯННОГО<br>ТОКА |         |
| ЛАБОРАТОРНАЯ РАБОТА 3. ИССЛЕДОВАНИЕ ЯВЛЕНИЯ РЕЗОНАНСА<br>НАПРЯЖЕНИЙ                                                                                                     |         |
| ЛАБОРАТОРНАЯ РАБОТА 4. ИССЛЕДОВАНИЕ ТРЕХФАЗНОЙ ЦЕПИ ПЕ<br>СОЕДИНЕНИИ ФАЗ ИСТОЧНИКА И ПРИЕМНИКА ЗВЕЗДОЙ                                                                  |         |
| ЛАБОРАТОРНАЯ РАБОТА 5. ИССЛЕДОВАНИЕ ТРЕХФАЗНОЙ ЦЕПИ ПЕ<br>СОЕДИНЕНИИ ТРЕУГОЛЬНИКОМ                                                                                      |         |
| ЛАБОРАТОРНАЯ РАБОТА 6. ИССЛЕДОВАНИЕ РЕЖИМОВ ХОЛОСТОГО<br>ХОДА И КОРОТКОГО ЗАМЫКАНИЯ ОДНОФАЗНОГО<br>ТРАНСФОРМАТОРА                                                       |         |
| ЛАБОРАТОРНАЯ РАБОТА 7. ИССЛЕДОВАНИЕ<br>ПОТЕНЦИОМЕТРИЧЕСКИХ ИЗМЕРИТЕЛЬНЫХ ПРЕОБРАЗОВАТЕЛЕЙ                                                                               | 22      |
| ЛАБОРАТОРНАЯ РАБОТА 8. ИССЛЕДОВАНИЕ ЭЛЕКТРОМАГНИТНОГО<br>УСИЛИТЕЛЯ                                                                                                      | O<br>26 |
| ЛАБОРАТОРНАЯ РАБОТА 9. АНАЛОГОВОЕ ИЗМЕРЕНИЕ УГЛА И<br>ПРЕОБРАЗОВАНИЕ РЕЗУЛЬТАТОВ ИЗМЕРЕНИЯ В ЦИФРОВОЙ<br>СИГНАЛ                                                         | 30      |
| ЛАБОРАТОРНАЯ РАБОТА 10. ИЗУЧЕНИЕ СХЕМ АВТОМАТИЧЕСКОГО СВЯЗЫВАНИЯ НЕСКОЛЬКИХ АСИНХРОННЫХ ДВИГАТЕЛЕЙ                                                                      | 32      |
| ЛАБОРАТОРНАЯ РАБОТА 11. ТАРИРОВКА ПЕРВИЧНОГО<br>ИЗМЕРИТЕЛЬНОГО ПРЕОБРАЗОВАТЕЛЯ ДАВЛЕНИЯ С ЛИНЕЙНОЙ<br>ХАРАКТЕРИСТИКОЙ ПО УРОВНЮ                                         | 35      |
| ЛАБОРАТОРНАЯ РАБОТА 12. ИССЛЕДОВАНИЕ СИСТЕМ<br>АВТОМАТИЧЕСКОГО РЕГУЛИРОВАНИЯ И УПРАВЛЕНИЯ В РАСЧЕТА<br>НА ЭВМ                                                           |         |
| ЛАБОРАТОРНАЯ РАБОТА 13. ОПРЕДЕЛЕНИЕ КАЧЕСТВЕННЫХ ПОКАЗАТЕЛЕЙ СИСТЕМЫ РЕГУЛИРОВАНИЯ                                                                                      | 40      |
| ЛАБОРАТОРНАЯ РАБОТА 14. ИССЛЕДОВАНИЕ АВТОМАТИЧЕСКОЙ СИСТЕМЫ ПОЗИЦИОННОГО РЕГУЛИРОВАНИЯ ТЕМПЕРАТУРЫ                                                                      |         |
| ТЕПЛОВОГО ОБЪЕКТА                                                                                                                                                       |         |
| ПИТЕРАТУРА                                                                                                                                                              | 45      |

# ЛАБОРАТОРНАЯ РАБОТА 1. ИССЛЕДОВАНИЕ ОСНОВНЫХ РЕЖИМОВ РАБОТЫ ПРОСТЕЙШЕЙ ЭЛЕКТРИЧЕСКОЙ ЦЕПИ ПОСТОЯННОГО ТОКА

**Цель работы**: исследование распределения энергии на элементах простейшей электрической цепи постоянного тока при переходе от одного режима работы цепи к другому.

### Порядок выполнения работы

1. Необходимо, используя омметр, выбрать из комплекта элементов наборного поля два резистора  $R_1$  и  $R_2$ , имитирующих сопротивление проводов линии электропередачи ( $R_1 + R_2 = R_{\mathcal{I}} \approx 500 \ Om$ ).

Выбираем:  $R_1 =$  *Ом*;  $R_2 =$  *Ом*.

2. Собираем схему, представленную на рисунке 1.1.

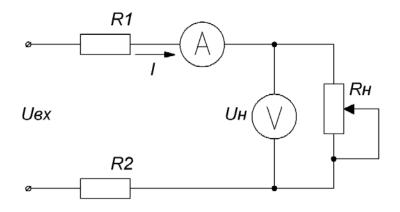



Рисунок 1.1 – Схема моделирования

Ее реализация в программе Electronics Workbench (рис. 1.2).

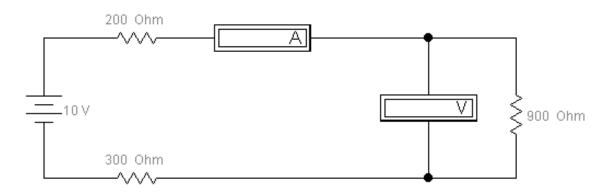
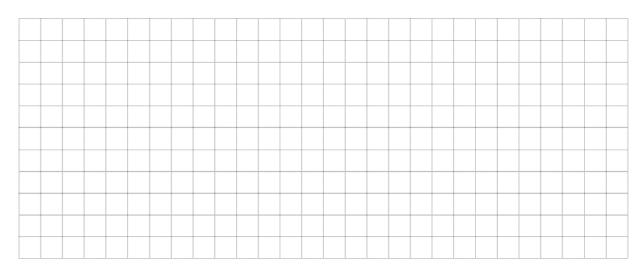



Рисунок 1.2 – Схема моделирования в Electronics Workbench

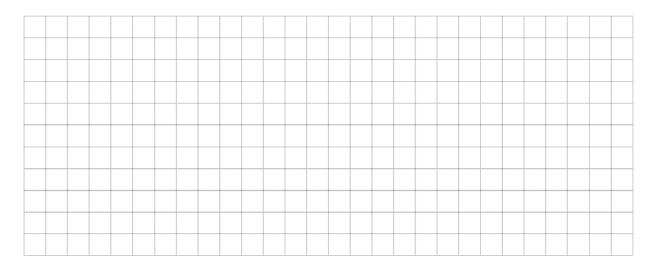
3. Исследуем работу схемы, изменяя сопротивления переменного резистора  $R_H$  согласно таблице 1.1. Сюда же заносим показания приборов.


Таблица 1.1 – Экспериментальные и расчетные данные

| Тиолиц          | 1.1                    | Kerrer     |           | альные и<br>еримен- | pac ic     | тиыс д | шшыс    |                     |    |          |
|-----------------|------------------------|------------|-----------|---------------------|------------|--------|---------|---------------------|----|----------|
| D.              | D                      | <b>T</b> 7 |           | ьные                |            | Pa     | счётны  | е данн              | ые |          |
| Режим<br>работы | R <sub>H</sub> ,<br>Ом | B          | дан       | ные                 |            |        |         |                     |    |          |
| раооты          | Ом                     | D          | $U_{H}$ , | I,                  | $U_{II}$ , | Р,     | $P_H$ , | $P_{\mathcal{I}}$ , | R, | $\eta$ , |
|                 |                        |            | В         | мА                  | В          | Вт     | Вт      | Вт                  | Ом | %        |
|                 | 0,001                  | 10         |           |                     |            |        |         |                     |    |          |
|                 | 100                    | 10         |           |                     |            |        |         |                     |    |          |
|                 | 200                    | 10         |           |                     |            |        |         |                     |    |          |
|                 | 300                    | 10         |           |                     |            |        |         |                     |    |          |
|                 | 400                    | 10         |           |                     |            |        |         |                     |    |          |
|                 | 500                    | 10         |           |                     |            |        |         |                     |    |          |
|                 | 600                    | 10         |           |                     |            |        |         |                     |    |          |
|                 | 700                    | 10         |           |                     |            |        |         |                     |    |          |
|                 | 800                    | 10         |           |                     |            |        |         |                     |    |          |
|                 | 900                    | 10         |           |                     |            |        |         |                     |    |          |
|                 | $\infty$               | 10         |           |                     |            |        |         |                     |    |          |

| 4. Рассчі     | итываем  | величины,  | содержащиеся | В | таолице | 1.1 | В | графе |
|---------------|----------|------------|--------------|---|---------|-----|---|-------|
| «Расчётные да | нные», п | о следующи | м формулам:  |   |         |     |   |       |
|               |          |            |              |   |         |     |   |       |
|               |          |            |              |   |         |     |   |       |
|               |          |            |              |   |         |     |   |       |
|               |          |            |              |   |         |     |   |       |

<sup>5.</sup> На основании экспериментальных и расчётных данных строим графики следующих зависимостей:


$$U_{\scriptscriptstyle BX}(I);\,U_{\scriptscriptstyle H}(I);\,U_{\scriptscriptstyle JI}(I)$$



$$P_{BX}(I); P_{H}(I); P_{JI}(I)$$



R(I);  $\eta(I)$ 



# ЛАБОРАТОРНАЯ РАБОТА 2. ЭКСПЕРИМЕНТАЛЬНАЯ ПРОВЕРКА МЕТОДА НЕПОСРЕДСТВЕННОГО ПРИМЕНЕНИЯ ЗАКОНОВ КИРХГОФА ДЛЯ РАСЧЕТА СЛОЖНЫХ ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ ПОСТОЯННОГО ТОКА

**Цель работы**: изучение правил расчета сложной электрической цепи постоянного тока методом непосредственного применения законов Кирхгофа и ее экспериментальное исследование.

### Порядок выполнения работы

- 1. Выбираем произвольно из комплекта элементов наборного поля резисторы  $R_1 \dots R_5$ .
  - 2. Собираем схему, представленную на рисунке 2.1.

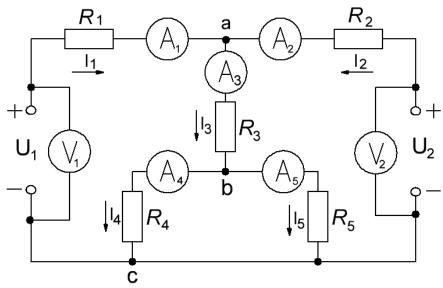



Рисунок 2.1 – Схема моделирования электрической цепи постоянного тока

- 3. Устанавливаем заданное преподавателем значение напряжения регулируемого источника  $U_2$  и измеряем напряжение  $U_1$ . Запишем значения напряжений в таблицу 2.2.
- 4. Измеряем значения токов  $I_1 \dots I_5$  и заносим их в таблицу 2.1. При этом учитываем их направления (рис. 2.1).

Таблица 2.1 – Экспериментальные и расчетные данные

|                   | $U_1, B$ | $U_2, B$ | $I_1$ , $MA$ | $I_2$ , м $A$ | $I_3$ , $MA$ | $I_4$ , м $A$ | $I_5$ , $MA$ |
|-------------------|----------|----------|--------------|---------------|--------------|---------------|--------------|
| Экспериментальные |          |          |              |               |              |               |              |
| данные            |          |          |              |               |              |               |              |
| Расчетные данные  |          |          |              |               |              |               |              |

5. При помощи омметра измеряем сопротивления резисторов  $R_1 \dots R_5$ . Данные заносим в таблицу 2.2.

Таблица 2.2 – Значения сопротивлений резисторов

| $R_1$ , $O_M$ | $R_2$ , Ом | $R_3$ , $O_M$ | $R_4$ , $O_M$ | $R_5$ , Ом |
|---------------|------------|---------------|---------------|------------|
|               |            |               |               |            |

6. Считая ЭДС источников равными их напряжениям  $U_1$  и  $U_2$  и используя данные таблицы 2.2, рассчитываем значения токов в ветвях цепи методом непосредственного применения законов Кирхгофа. Результаты расчета заносим в таблицу 2.1.

7. Сравним расчетные и экспериментальные данные. Составляем уравнение баланса мощностей для электрической цепи, представленной на рисунке 2.1.

# **ЛАБОРАТОРНАЯ РАБОТА 3. ИССЛЕДОВАНИЕ ЯВЛЕНИЯ РЕЗОНАНСА НАПРЯЖЕНИЙ**

**Цель работы**: исследование режимов работы цепи переменного тока, содержащей последовательное соединение резистивного, индуктивного и емкостного элементов.

### Порядок выполнения работы

1. По заданным преподавателем значениям емкости (индуктивности) рассчитываем значение индуктивности (емкости), необходимой для выполнения условия резонанса напряжений на частоте, равной 4  $\kappa \Gamma u$ , а также значение активного сопротивления, необходимого для выполнения следующего условия:  $U_L = U_C > U_R$ .

2. Соберем схему, представленную на рисунке 3.1, задав требуемые номиналы сопротивления, индуктивности, емкости (R, L, C).

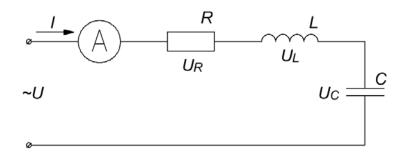



Рисунок 3.1 – Схема моделирования

- 3. Устанавливаем на входе цепи напряжение  $10 \dots 15 \ B$  и заносим его значение в таблицу 3.1.
- 4. Исследуем работу схемы, изменяя частоту f согласно таблице 3.1. Сюда же заносим показания приборов.

Таблица 3.1 – Экспериментальные и расчетные данные

|           | Паолица |         | _        |         | om pae ie |    |         |                        |                |
|-----------|---------|---------|----------|---------|-----------|----|---------|------------------------|----------------|
| f         | U,      |         | еримента |         | анные     |    | l       | ие данны               | е              |
| f,<br>κΓų |         | $U_R$ , | $U_L$ ,  | $U_C$ , | I,        | Ζ, | $X_L$ , | $X_{C}$                | 2224           |
| кі ц      | В       | B       | B        | В       | мА        | Ом | Ом      | X <sub>C</sub> ,<br>Ом | $\cos \varphi$ |
| 0,001     |         |         |          |         |           |    |         |                        |                |
| 1         |         |         |          |         |           |    |         |                        |                |
| 2         |         |         |          |         |           |    |         |                        |                |
| 3         |         |         |          |         |           |    |         |                        |                |
| 4         |         |         |          |         |           |    |         |                        |                |
| 5         |         |         |          |         |           |    |         |                        |                |
| 6         |         |         |          |         |           |    |         |                        |                |
| 7         |         |         |          |         |           |    |         |                        |                |
| 8         |         |         |          |         |           |    |         |                        |                |

5. Рассчитываем величины, содержащиеся в таблице 3.1 в графе «Расчётные данные», по следующим формулам:

<sup>6.</sup> На основании экспериментальных и расчётных данных строим:

а. Три векторные диаграммы токов и напряжений для случаев:





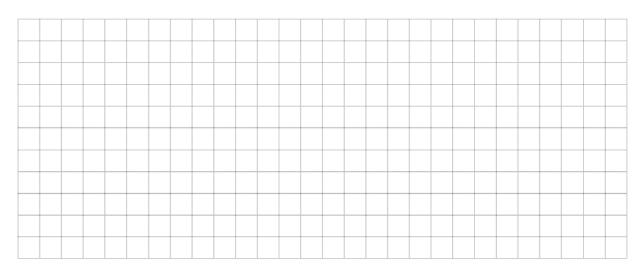
$$X_L = X_C$$



 $X_L < X_C$ 



б. Зависимости:


I(f)




 $U(f); U_R(f); U_L(f); U_C(f)$ 



### Z(f)



### $\cos \varphi(f)$



# ЛАБОРАТОРНАЯ РАБОТА 4. ИССЛЕДОВАНИЕ ТРЕХФАЗНОЙ ЦЕПИ ПРИ СОЕДИНЕНИИ ФАЗ ИСТОЧНИКА И ПРИЕМНИКА ЗВЕЗДОЙ

**Цель работы**: изучить особенности работы и свойства трехфазной цепи при соединении звездой фаз источника и приемника.

### Порядок выполнения работы

- 1. Собираем схему, представленную на рисунке 4.1. В качестве фазных напряжений используем источники синусоидального напряжения, установив в их настройках:
  - напряжение: 10 *B*;
  - частота: 50 Ги;
  - фазовый сдвиг: для  $A-0^{\circ}$ , для  $B-120^{\circ}$ , для  $C-240^{\circ}$ .

Задаем сопротивление нагрузки 500 Ом.

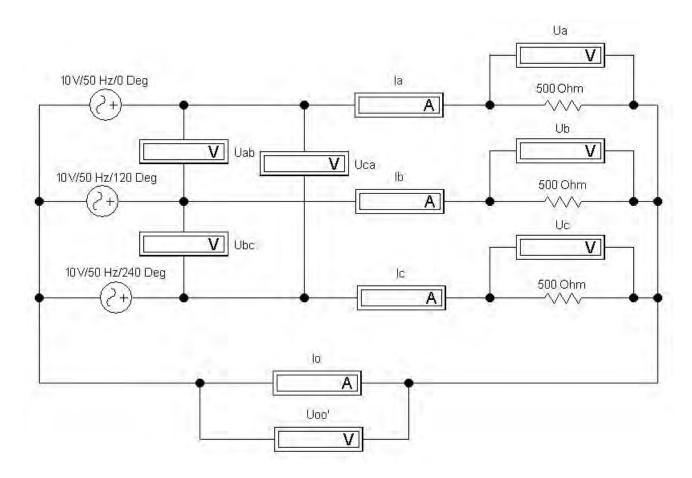



Рисунок 4.1 – Схема моделирования в Electronics Workbench

2. Исследуем работу цепи, изменяя режимы ее работы согласно таблице 4.1. Сюда же заносим результаты измерений.

Таблица 4.1 – Экспериментальные данные

| таолица т.т        | <u> </u> | P 111.11 |       | DIIDI | данн    |       |         |            |   |            |             |
|--------------------|----------|----------|-------|-------|---------|-------|---------|------------|---|------------|-------------|
| Режим              | $I_A$ ,  | $I_B$    | $I_C$ | $I_0$ | $U_A$ , |       | $U_C$ , | $U_{AB}$ , |   | $U_{CA}$ , | $U_{OO'}$ , |
|                    | MA       | мА       | мА    | MA    | B       | B     | B       | B          | B | B          | B           |
|                    |          | Че       | гырех | хпроі | водна   | я схе | ма      |            |   |            |             |
| Симметричная       |          |          |       |       |         |       |         |            |   |            |             |
| нагрузка           |          |          |       |       |         |       |         |            |   |            |             |
| Несимметричная     |          |          |       |       |         |       |         |            |   |            |             |
| нагрузка           |          |          |       |       |         |       |         |            |   |            |             |
| Разгрузка          |          |          |       |       |         |       |         |            |   |            |             |
| фазы А             |          |          |       |       |         |       |         |            |   |            |             |
|                    |          | Γ        | рехп  | рово  | дная    | схема | l       |            |   |            |             |
| Симметричная       |          |          |       |       |         |       |         |            |   |            |             |
| нагрузка           |          |          |       |       |         |       |         |            |   |            |             |
| Несимметричная     |          |          |       |       |         |       |         |            |   |            |             |
| нагрузка           |          |          |       |       |         |       |         |            |   |            |             |
| Разгрузка          |          |          |       |       |         |       |         |            |   |            |             |
| фазы А             |          |          |       |       |         |       |         |            |   |            |             |
| Короткое замыкание |          |          |       |       |         |       |         |            |   |            |             |
| фазы А             |          |          |       |       |         |       |         |            |   |            |             |


3. Строим векторные диаграммы для трех заданных режимов:

| Pe | ЖИ | M _ |  |  |  |  |  |  |  |  |  |  |  |
|----|----|-----|--|--|--|--|--|--|--|--|--|--|--|
|    |    |     |  |  |  |  |  |  |  |  |  |  |  |
|    |    |     |  |  |  |  |  |  |  |  |  |  |  |
|    |    |     |  |  |  |  |  |  |  |  |  |  |  |
|    |    |     |  |  |  |  |  |  |  |  |  |  |  |
|    |    |     |  |  |  |  |  |  |  |  |  |  |  |
|    |    |     |  |  |  |  |  |  |  |  |  |  |  |
|    |    |     |  |  |  |  |  |  |  |  |  |  |  |
|    |    |     |  |  |  |  |  |  |  |  |  |  |  |
|    |    |     |  |  |  |  |  |  |  |  |  |  |  |
|    |    |     |  |  |  |  |  |  |  |  |  |  |  |
|    |    |     |  |  |  |  |  |  |  |  |  |  |  |
|    |    |     |  |  |  |  |  |  |  |  |  |  |  |
|    |    |     |  |  |  |  |  |  |  |  |  |  |  |
|    |    |     |  |  |  |  |  |  |  |  |  |  |  |
|    |    |     |  |  |  |  |  |  |  |  |  |  |  |
|    |    |     |  |  |  |  |  |  |  |  |  |  |  |
|    |    |     |  |  |  |  |  |  |  |  |  |  |  |
|    |    |     |  |  |  |  |  |  |  |  |  |  |  |
|    |    |     |  |  |  |  |  |  |  |  |  |  |  |

| -     |  |  |  |
|-------|--|--|--|
| Режим |  |  |  |
| РЕЖИМ |  |  |  |
|       |  |  |  |







# ЛАБОРАТОРНАЯ РАБОТА 5. ИССЛЕДОВАНИЕ ТРЕХФАЗНОЙ ЦЕПИ ПРИ СОЕДИНЕНИИ ТРЕУГОЛЬНИКОМ

**Цель работы**: изучить особенности работы и свойства трехфазной цепи при соединении треугольником фаз источника и приемника.

### Порядок выполнения работы

- 1. Собираем схему, представленную на рисунке 5.1. В качестве фазных напряжений используем источники синусоидального напряжения, установив в их настройках:
  - напряжение: 10 *B*;
  - частота: 50 Ги;
  - фазовый сдвиг: для фазы  $A 0^{\circ}$ , для фазы  $B 120^{\circ}$ , для фазы  $C 240^{\circ}$ ;
  - параметр Fault: для фазы A Open, для фаз В и C Short.

Задаем сопротивление нагрузки 500 Ом.

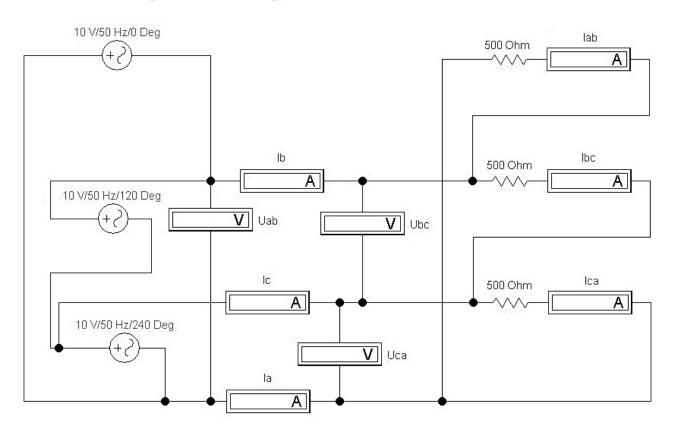



Рисунок 5.2 – Схема моделирования в Electronics Workbench

2. Исследуем работу цепи, изменяя режимы ее работы согласно таблице 5.1. Сюда же заносим результаты измерений.

Таблица 5.1 – Экспериментальные данные

| Режимы          | $I_A, \ MA$ | $I_B$ , $MA$ | <i>I<sub>C</sub></i> ,<br>мА | $I_{AB}, \ MA$ | $I_{BC},$ $MA$ | $I_{CA}, MA$ | $U_{AB}, B$ | $U_{BC}, B$ | $U_{CA},\ B$ |
|-----------------|-------------|--------------|------------------------------|----------------|----------------|--------------|-------------|-------------|--------------|
| Симметричная    | ****        | ****         | ****                         | ****           | 7.72           | ****         |             |             | _            |
| нагрузка        |             |              |                              |                |                |              |             |             |              |
| Несимметричная  |             |              |                              |                |                |              |             |             |              |
| нагрузка        |             |              |                              |                |                |              |             |             |              |
| Разгрузка       |             |              |                              |                |                |              |             |             |              |
| фазы А          |             |              |                              |                |                |              |             |             |              |
| Обрыв линейного |             |              |                              |                |                |              |             |             |              |
| провода         |             |              |                              |                |                |              |             |             |              |

### 3. Строим векторные диаграммы для трех режимов:

### Режим «Симметричная нагрузка»



### Режим «Несимметричная нагрузка»



### Режим «Разгрузка фазы А»



### ЛАБОРАТОРНАЯ РАБОТА 6. ИССЛЕДОВАНИЕ РЕЖИМОВ ХОЛОСТОГО ХОДА И КОРОТКОГО ЗАМЫКАНИЯ ОДНОФАЗНОГО ТРАНСФОРМАТОРА

**Цель работы**: изучение предельных режимов работы и определение основных параметров однофазного трансформатора.

### Порядок выполнения работы

1. Для исследования трансформатора  $TV_2$  в режиме <u>холостого хода</u> соберем электрическую цепь, схема которой представлена на рисунке 6.1.

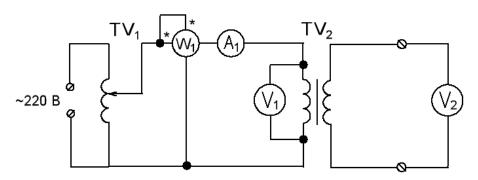



Рисунок 6.1 – Схема моделирования

2. Исследуем работу схемы, изменяя величину напряжения  $U_{10}$ , согласно таблице 6.1. Сюда же заносим показания приборов.

Таблица 6.1 – Экспериментальные и расчетные данные для режима холостого хода

| Экспер      | оимента        | льные       | данные       |               | F             | асчетны       | е данны           | e                   |   |
|-------------|----------------|-------------|--------------|---------------|---------------|---------------|-------------------|---------------------|---|
| $U_{10}, B$ | $U_{20}$ , $B$ | $I_{10}, A$ | $P_0$ , $Bm$ | $Z_0$ , $O_M$ | $R_0$ , $O_M$ | $X_0$ , $O_M$ | $\cos\!\varphi_0$ | $\varphi_0,^{ m o}$ | K |
| 60          |                |             |              |               |               |               |                   |                     |   |
| 100         |                |             |              |               |               |               |                   |                     |   |
| 140         |                |             |              |               |               |               |                   |                     |   |
| 180         |                |             |              |               |               |               |                   |                     |   |
| 220         |                |             |              |               |               |               |                   |                     |   |

3. Рассчитываем величины, содержащиеся в таблице 6.1 в графе «Расчётные данные», по следующим формулам:

4. На основании экспериментальных данных строим графики следующих зависимостей:

$$I_{10}(U_{10})$$



$$P_0(U_{10})$$



5. Для исследования трансформатора  $TV_2$  в режиме <u>короткого замыкания</u> соберем электрическую цепь, схема которой представлена на рисунке 6.2.

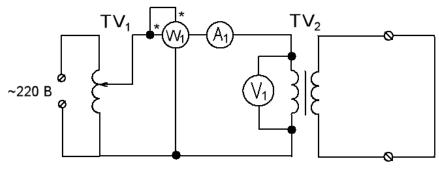
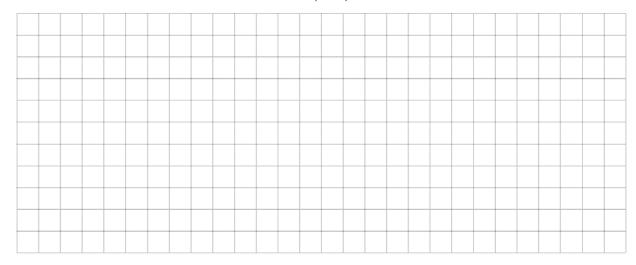



Рисунок 6.2 – Схема моделирования

6. Исследуем работу схемы, изменяя величину тока  $I_{1\kappa}$ , согласно таблице 6.2. Сюда же заносим показания приборов.


Таблица 6.2 – Экспериментальные и расчетные данные для режима короткого замыкания

|                   | 10 00011121111      |                     | 1                                |                                  |                                  |                                          |                        |                           |  |  |
|-------------------|---------------------|---------------------|----------------------------------|----------------------------------|----------------------------------|------------------------------------------|------------------------|---------------------------|--|--|
| Экспе             | ериментал<br>данные | льные               | Расчетные данные                 |                                  |                                  |                                          |                        |                           |  |  |
| $U_{1\kappa}$ , B | $I_{1\kappa}, A$    | $P_{\kappa}$ , $Bm$ | $Z_{\kappa}$ , $O_{\mathcal{M}}$ | $R_{\kappa}$ , $O_{\mathcal{M}}$ | $X_{\kappa}$ , $O_{\mathcal{M}}$ | $\cos \varphi_{\scriptscriptstyle  m K}$ | $\varphi_{\kappa}$ , o | <i>U</i> <sub>κ</sub> , % |  |  |
|                   | 0,12                |                     |                                  |                                  |                                  |                                          |                        |                           |  |  |
|                   | 0,14                |                     |                                  |                                  |                                  |                                          |                        |                           |  |  |
|                   | 0,16                |                     |                                  |                                  |                                  |                                          |                        |                           |  |  |
|                   | 0,18                |                     |                                  |                                  |                                  |                                          |                        |                           |  |  |
|                   | 0,2                 |                     |                                  |                                  |                                  |                                          |                        |                           |  |  |

7. Рассчитываем величины, содержащиеся в таблице 6.1 в графе «Расчётные данные», по следующим формулам:

8. На основании экспериментальных данных строим графики следующих зависимостей:

$$I_{1\kappa}(U_{1\kappa})$$



### $P_{\kappa}(U_{1\kappa})$



# ЛАБОРАТОРНАЯ РАБОТА 7. ИССЛЕДОВАНИЕ ПОТЕНЦИОМЕТРИЧЕСКИХ ИЗМЕРИТЕЛЬНЫХ ПРЕОБРАЗОВАТЕЛЕЙ

**Цель работы:** освоение методики определения основных параметров потенциометрических преобразователей.

### Порядок выполнения работы

Исследование одноактного потенциометрического преобразователя

1. Измеряем полное сопротивление потенциометрического преобразователя C1, сопротивление нагрузок  $R_{H1}$  и  $R_{H2}$ . Данные заносим в таблицу 7.1.

Таблица 7.1 – Значения сопротивления преобразователя и нагрузок

| $R_{C1}, O_M$ | $R_{H1}, O_M$ | $R_{H2}, O_M$ |
|---------------|---------------|---------------|
|               |               |               |

2. Вращая ручку потенциометра C1, снимаем зависимость  $R_{C1}(\varphi)$ . Данные заносим в таблицу 7.2.

Таблица 7.2 — Экспериментальные данные зависимости  $R_{C1}(\varphi)$ 

|               | 1 000 | ттцю , |    | moniop. |     | WIDIID. | дон | IIDIO SU | DII | 100111 | <b>11</b> (1) |     |     |
|---------------|-------|--------|----|---------|-----|---------|-----|----------|-----|--------|---------------|-----|-----|
| $\varphi$ , o | 0     | 30     | 60 | 90      | 120 | 150     | 180 | 210      | 240 | 270    | 300           | 330 | 360 |
| $R_{C1}$ ,    |       |        |    |         |     |         |     |          |     |        |               |     |     |
| Ом            |       |        |    |         |     |         |     |          |     |        |               |     |     |

3. Соберем схему, представленную на рисунке 7.1.

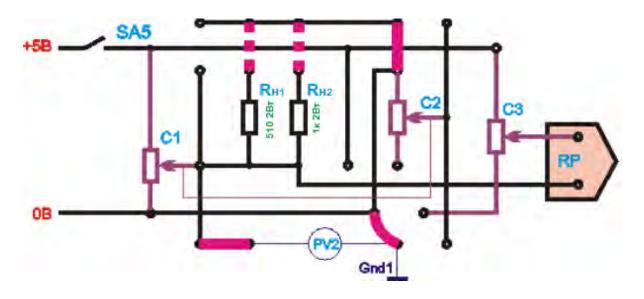



Рисунок 7.1 – Схема одноактного потенциометрического преобразователя

4. Плавно перемещая ручку потенциометра С1, снимаем статическую характеристику  $U_{\mathit{BbIX}}(\varphi)$  при подключении нагрузки  $R_{\mathit{H1}}$  и  $R_{\mathit{H2}}$ . Данные заносим в таблицу 7.3.

Таблица 7.3 – Статическая характеристика  $U_{BLIX}(\varphi)$  на холостом ходу и

при подключении нагрузки  $R_{H1}$  и  $R_{H2}$ 

| при пс                      | дклю | чспии | тпагр | узки | $\alpha_{H1}$ m | $\iota \iota_{H2}$ |     |     |     |     |     |     |     |
|-----------------------------|------|-------|-------|------|-----------------|--------------------|-----|-----|-----|-----|-----|-----|-----|
| $\varphi$ , $^{\mathrm{o}}$ | 0    | 30    | 60    | 90   | 120             | 150                | 180 | 210 | 240 | 270 | 300 | 330 | 360 |
| $U_{BMX}$ ,                 |      |       |       |      |                 |                    |     |     |     |     |     |     |     |
| B                           |      |       |       |      |                 |                    |     |     |     |     |     |     |     |
| (x.x.)                      |      |       |       |      |                 |                    |     |     |     |     |     |     |     |
| $U_{BMX}$ ,                 |      |       |       |      |                 |                    |     |     |     |     |     |     |     |
| B                           |      |       |       |      |                 |                    |     |     |     |     |     |     |     |
| $(R_{H1})$                  |      |       |       |      |                 |                    |     |     |     |     |     |     |     |
| $U_{BMX}$ ,                 |      |       |       |      |                 |                    |     |     |     |     |     |     |     |
| B                           |      |       |       |      |                 |                    |     |     |     |     |     |     |     |
| $(R_{H2})$                  |      |       |       |      |                 |                    |     |     |     |     |     |     |     |

5. На основании экспериментальных данных строим графики статической характеристики  $U_{\mathit{BbIX}}(\varphi)$  на холостом ходу и при подключении нагрузки  $R_{\mathit{H1}}$  и  $R_{\mathit{H2}}$ :



Исследование мостовой потенциометрической схемы

6. Соберем схему, представленную на рисунке 7.2.

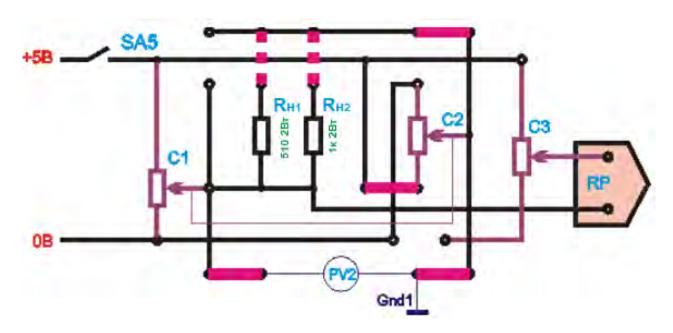



Рисунок 7.2 – Схема мостового потенциометрического преобразователя

- 7. Плавно поворачивая ручку потенциометра С1, С2, снимаем статические характеристики  $U_{\mathit{BblX}}(\varphi)$  в режиме холостого хода. Данные заносим в таблицу 7.4.
- 8. Плавно поворачивая ручку потенциометра С1, С2, снимаем статические характеристики  $U_{BыX}(\varphi)$  при подключении нагрузки  $R_{H1}$  и  $R_{H2}$ . Данные заносим в таблицу 7.4.

Таблица 7.4 — Статическая характеристика  $U_{BLIX}(\varphi)$  на холостом ходу и

при подключении нагрузки  $R_{H1}$  и  $R_{H2}$ 

|                         | $U_{BbIX}$ , $I$ | B(x.x.) | $U_{BMX}$ , $I$ | $B(R_{H1})$ | $U U_{BMX}$ | $B(R_{H2})$ |
|-------------------------|------------------|---------|-----------------|-------------|-------------|-------------|
| $\varphi,^{\mathrm{o}}$ | напраз           | вление  | направ          | вление      | направ      | зление      |
|                         | прав.            | лев.    | прав.           | лев.        | прав.       | лев.        |
| 0                       |                  |         |                 |             |             |             |
| 30                      |                  |         |                 |             |             |             |
| 60                      |                  |         |                 |             |             |             |
| 90                      |                  |         |                 |             |             |             |
| 120                     |                  |         |                 |             |             |             |
| 150                     |                  |         |                 |             |             |             |
| 180                     |                  |         |                 |             |             |             |
| 210                     |                  |         |                 |             |             |             |
| 240                     |                  |         |                 |             |             |             |
| 270                     |                  |         |                 |             |             |             |
| 300                     |                  |         |                 |             |             |             |
| 330                     |                  |         |                 |             |             |             |
| 360                     |                  |         |                 |             |             |             |

9. На основании экспериментальных данных строим графики статической характеристики  $U_{\mathit{BЫX}}(\varphi)$  на холостом ходу и при подключении нагрузки  $R_{\mathit{H1}}$  и  $R_{\mathit{H2}}$ :



# **ЛАБОРАТОРНАЯ РАБОТА 8. ИССЛЕДОВАНИЕ** ЭЛЕКТРОМАГНИТНОГО УСИЛИТЕЛЯ

**Цель работы**: изучение устройства, принципа действия и характеристик дроссельного магнитного усилителя. Знакомство с назначением обратной связи и ее действием в магнитном усилителе.

### Порядок выполнения работы

1. Собираем схему, представленную на рисунке 8.1.

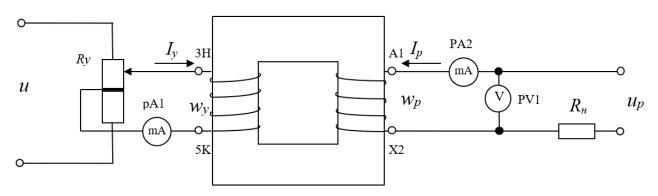



Рисунок 8.1 – Схема дроссельного магнитного усилителя

2. Снимаем зависимость  $Z(I_y)$ , изменяя величину тока управления  $I_y$  в обмотке управления  $W_y$  согласно таблице 8.1. При этом измеряем ток  $I_{th}$  напряжение U на рабочей обмотке  $W_p$ . Данные заносим в таблицу 8.1.

Таблица 8.1 – Экспериментальные данные

| $I_y$ , м $A$                     | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
|-----------------------------------|---|---|---|---|---|---|---|---|
| $I_{\scriptscriptstyle H}$ , $MA$ |   |   |   |   |   |   |   |   |
| U, B                              |   |   |   |   |   |   |   |   |
| Z, Ом                             |   |   |   |   |   |   |   |   |

3. Вычисляем величину полного сопротивления Z по формуле:

4. На основании экспериментальных данных строим характеристику  $Z(I_y)$ :



5. Собираем схему, представленную на рисунке 8.2.

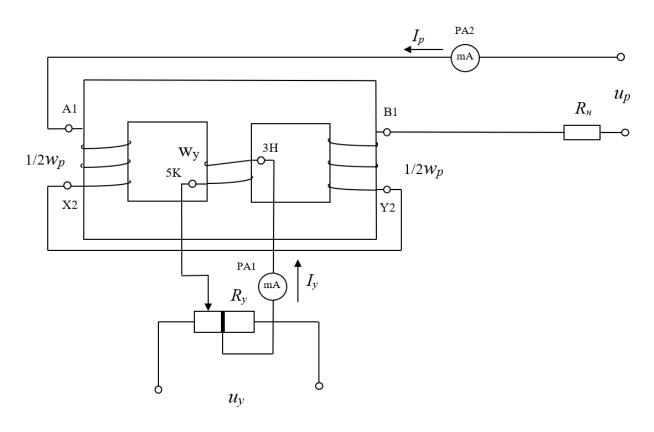



Рисунок 8.2 – Схема симметричного магнитного усилителя

6. Снимаем характеристику «вход — выход»  $I_{H}(I_{y})$  для дроссельного магнитного усилителя, изменяя величину тока управления  $I_{y}$  согласно таблице 8.2. При этом измеряем величину тока  $I_{p}$  в рабочей цепи. Данные заносим в таблицу 8.2.

Таблица 8.2 – Экспериментальные данные

| $I_y$ , $MA$                      | -7 | -6 | -5 | -4 | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
|-----------------------------------|----|----|----|----|----|----|----|---|---|---|---|---|---|---|---|
| $I_{\scriptscriptstyle H}$ , $MA$ |    |    |    |    |    |    |    |   |   |   |   |   |   |   |   |

7. Собираем схему, представленную на рисунке 8.3.

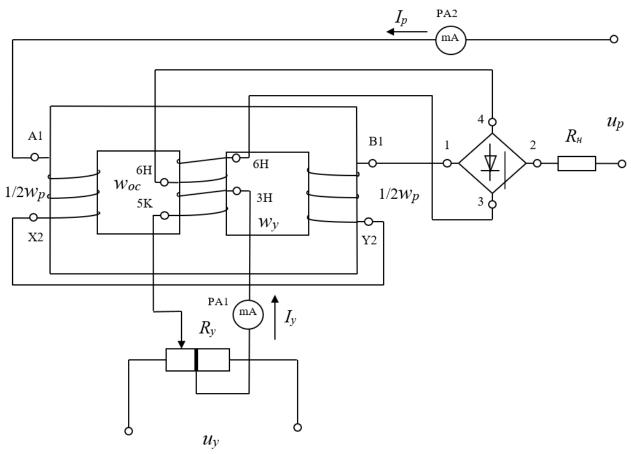



Рисунок 8.3 – Схема магнитного усилителя с обратной связью

8. Снимаем характеристику «вход — выход»  $I_n(I_y)$  для дроссельного магнитного усилителя с обратной связью, изменяя величину тока управления  $I_y$  от +7 MA до 0 для случая положительной обратной связи и от -7 MA до 0 — для случая отрицательной обратной связи. При этом измеряем величину рабочего тока  $I_p$ . Данные заносим в таблицу 8.3.

Таблица 8.3 – Экспериментальные данные

| $I_{y}$                    | у, мА             | -7 | -6 | -5 | -4 | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
|----------------------------|-------------------|----|----|----|----|----|----|----|---|---|---|---|---|---|---|---|
| $I_{\scriptscriptstyle H}$ | <sub>н</sub> , мА |    |    |    |    |    |    |    |   |   |   |   |   |   |   |   |

9. На основании экспериментальных данных (табл. 8.2 и 8.3) строим характеристики «вход – выход»  $I_{\nu}(I_{\nu})$  для симметричного МУ и МУ с ОС:



10. Пользуясь данными таблиц 8.2 и 8.3 и учитывая, что  $R_{\scriptscriptstyle H}$  = 200 Oм, а  $R_{\scriptscriptstyle y}$  = 400 Oм, рассчитываем коэффициенты усиления по току  $K_{\scriptscriptstyle i}$ , по напряжению  $K_{\scriptscriptstyle u}$  и по мощности  $K_{\scriptscriptstyle p}$  для случаев, когда обратная связь отсутствует, ОС положительная и ОС отрицательная, по следующим формулам:

Полученные данные заносим в таблицу 8.4.

Таблица 8.4 – Коэффициенты усиления для дроссельного магнитного усилителя

| K                | $K_i$ | $K_u$ | $K_p$ |
|------------------|-------|-------|-------|
| Без ОС           |       |       |       |
| ОС положительная |       |       |       |
| ОС отрицательная |       |       |       |

### ЛАБОРАТОРНАЯ РАБОТА 9. АНАЛОГОВОЕ ИЗМЕРЕНИЕ УГЛА И ПРЕОБРАЗОВАНИЕ РЕЗУЛЬТАТОВ ИЗМЕРЕНИЯ В ЦИФРОВОЙ СИГНАЛ

**Цель работы:** изучение методов измерения аналоговых сигналов при помощи операционных усилителей (ОУ). Знакомство с методами построения преобразователей угол-код.

### Порядок выполнения работы

1. Собираем схему, представленную на рисунке 9.1.

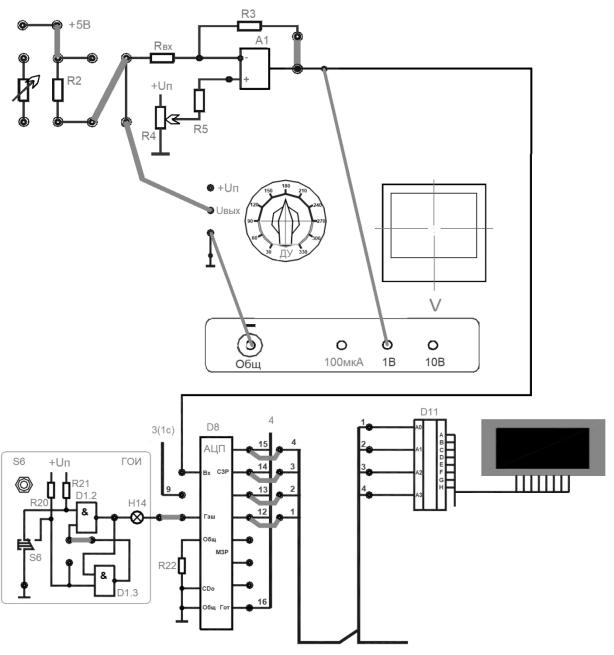



Рисунок 9.1 – Схема аналогового измерения угла с последующим преобразованием в цифровой сигнал

2. Задаваясь различными значениями угла  $\alpha$  согласно таблице 9.1, определяем величину сигнала на выходе инвертирующего усилителя на ОУ U, а также значение сигнала после аналого-цифрового преобразования. Полученные данные заносим в таблицу 9.1.

Таблица 9.1 – Экспериментальные данные

| α, °         | 30 | 60 | 90 | 120 | 150 | 180 | 210 | 240 | 270 | 300 | 330 |
|--------------|----|----|----|-----|-----|-----|-----|-----|-----|-----|-----|
| <i>U, мВ</i> |    |    |    |     |     |     |     |     |     |     |     |
| Код          |    |    |    |     |     |     |     |     |     |     |     |

3. Подаем питание +5В на ЦДУ. Для различных значений угла согласно таблице 9.2 определяем соответствующую двоичную величину на выходе датчика.

Таблица 9.2 – Экспериментальные данные

| 140. | лица 7.2 Экст | териментальнь |            |   | T        |
|------|---------------|---------------|------------|---|----------|
| 0. 0 |               | КО            | <b>Э</b> Д |   | Значения |
| α, ° | 1             | 2             | 4          | 8 | кинэранс |
| 30   |               |               |            |   |          |
| 60   |               |               |            |   |          |
| 90   |               |               |            |   |          |
| 120  |               |               |            |   |          |
| 150  |               |               |            |   |          |
| 180  |               |               |            |   |          |
| 210  |               |               |            |   |          |
| 240  |               |               |            |   |          |
| 270  |               |               |            |   |          |
| 300  |               |               |            |   |          |
| 330  |               |               |            |   |          |

### ЛАБОРАТОРНАЯ РАБОТА 10. ИЗУЧЕНИЕ СХЕМ АВТОМАТИЧЕСКОГО СВЯЗЫВАНИЯ НЕСКОЛЬКИХ АСИНХРОННЫХ ДВИГАТЕЛЕЙ

**Цель работы:** изучение средств и способов связывания нескольких асинхронных двигателей. Изучение схем последовательного включения двухфазных асинхронных двигателей.

### Порядок выполнения работы

1. Собираем схему управления тремя двигателями (рис. 10.1), работающей согласно тактограмме, представленной на рисунке 10.2.

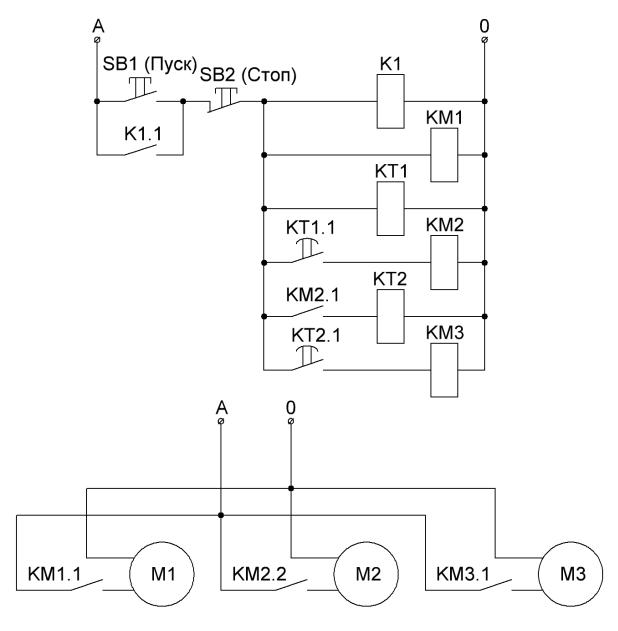



Рисунок 10.1 – Схема управления тремя двигателями

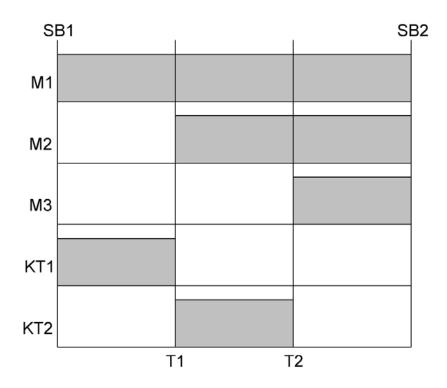



Рисунок 10.2 – Тактограмма работы системы

- 2. После проверки преподавателем запускаем систему и убеждаемся в правильности ее работы.
- 3. Составляем схему управления для системы, тактограмма которой задана на рисунке 10.3.

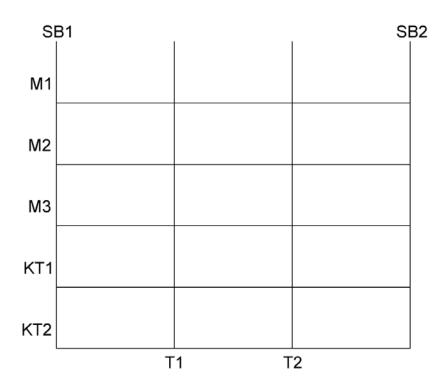



Рисунок 10.3 – Тактограмма работы системы

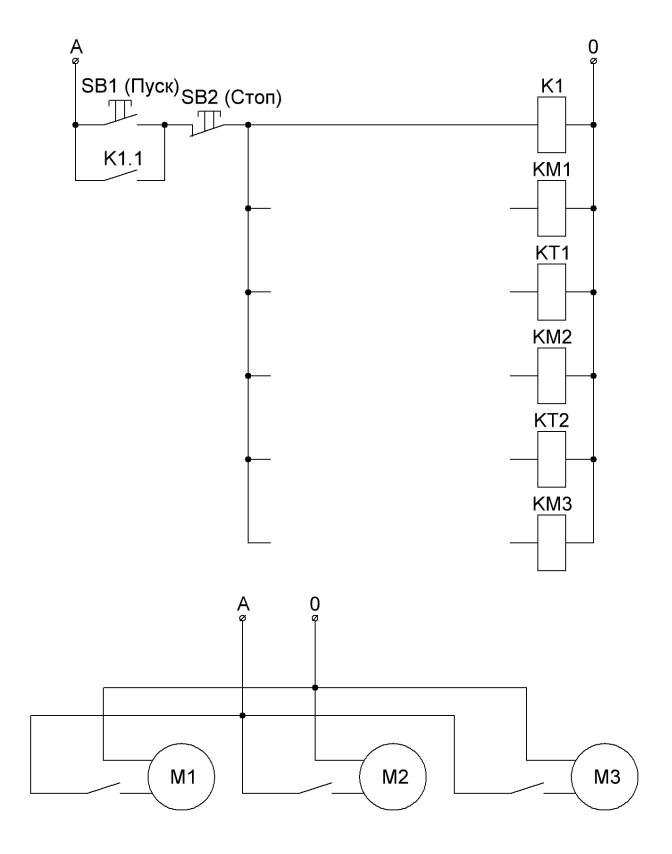



Рисунок 10.1 – Разработанная схема управления тремя двигателями

### ЛАБОРАТОРНАЯ РАБОТА 11. ТАРИРОВКА ПЕРВИЧНОГО ИЗМЕРИТЕЛЬНОГО ПРЕОБРАЗОВАТЕЛЯ ДАВЛЕНИЯ С ЛИНЕЙНОЙ ХАРАКТЕРИСТИКОЙ ПО УРОВНЮ

**Цель работы:** определение погрешности измерений технологических параметров автоматизированной системы управления. Тарировка датчика давления по уровню.

### Порядок выполнения работы

1. Знакомимся с работой лабораторно-технического комплекса СГЛ-100Л, упрощенная технологическая схема которого представлена на рисунке 11.1.

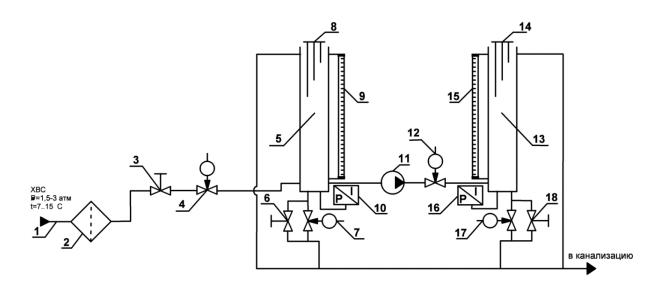



Рисунок 11.1 – Упрощенная технологическая схема лабораторно-технического комплекса СГЛ-100Л

На схеме цифрами обозначены следующие технические средства:

| 1 -   |  |
|-------|--|
|       |  |
|       |  |
|       |  |
|       |  |
| 5 – . |  |
| 6 _   |  |

| 7 <b>–</b> |                                       |
|------------|---------------------------------------|
|            |                                       |
|            | · · · · · · · · · · · · · · · · · · · |
|            |                                       |
|            |                                       |
|            |                                       |
|            |                                       |
|            |                                       |
|            |                                       |
| 16 – _     |                                       |
| 17 – _     | ·                                     |
| 18 – _     |                                       |

- 2. Выполняем лабораторную работу. Для этого:
- а. Включаем подачу XBC шаровым краном.
- b. Подключаем питание сети, включаем автомат управляющего ПЛК.
- с. Дожидаемся загрузки главного экрана ПО стенда.
- d. Нажимаем на кнопку «Подготовка к началу работы».
- е. Нажимаем на кнопку «Далее».
- f. Выбираем лабораторную работу 1 из списка и нажимаем кнопку «Далее».
  - g. Для начала лабораторной работы нажимаем кнопку «Старт».
- h. При достижении точки снятия параметров вводим значение уровня визуально по пьезометру и нанесенной за ним шкалы в поле ввода, после чего нажимаем на кнопку «Следующий шаг».
- i. Выполняем пункт 8 до достижения последней точки появления сообщения «Окончание лабораторной работы».
  - j. Нажимаем на кнопку «Далее».
  - k. Полученные данные заносим в таблицу 11.1.
  - 1. Для построения графика нажимаем на кнопку «Построить график».
- т. Для перехода на главную страницу нажимаем кнопку «К главной». В появившемся предупреждении о сливе воды нажимаем кнопку «Да».

- п. После окончания слива воды повторно нажимаем кнопку «К главной».
  - о. Отключаем подачу ХВС шаровым краном.
  - р. Выключаем автомат управляющего ПЛК, отключаем питание сети.

Таблица 11.1 – Экспериментальные и расчетные данные

| Экспері                       | иментальные     | Расчетные данные              |                            |                              |
|-------------------------------|-----------------|-------------------------------|----------------------------|------------------------------|
| Уровень<br>(визуально),<br>мм | Давление,<br>Па | Уровень<br>(расчетный),<br>мм | Абсолютная погрешность, мм | Относительная погрешность, % |
|                               |                 |                               |                            |                              |
|                               |                 |                               |                            |                              |
|                               |                 |                               |                            |                              |
|                               |                 |                               |                            |                              |
|                               |                 |                               |                            |                              |
|                               |                 |                               |                            |                              |
|                               |                 |                               |                            |                              |
|                               |                 |                               |                            |                              |
|                               |                 |                               |                            |                              |
|                               |                 |                               |                            |                              |

| 3. Ha     | основе   | полученных    | данных    | рассчитываем    | абсолютную    | И  |
|-----------|----------|---------------|-----------|-----------------|---------------|----|
|           | ую погре | ешность перви | иеи олони | мерительного пр | еобразователя | по |
| формулам: |          |               |           |                 |               |    |
|           |          |               |           |                 |               |    |
|           |          |               |           |                 |               |    |
|           |          |               |           |                 |               |    |
|           |          |               |           |                 |               |    |

<sup>4.</sup> На основании экспериментальных и расчетных данных строим график зависимости P(h):



### ЛАБОРАТОРНАЯ РАБОТА 12. ИССЛЕДОВАНИЕ СИСТЕМ АВТОМАТИЧЕСКОГО РЕГУЛИРОВАНИЯ И УПРАВЛЕНИЯ В РАСЧЕТАХ НА ЭВМ

**Цель работы**: исследование устойчивости одноконтурных системах автоматического регулирования и управления.

### Порядок выполнения работы

1. Структурная схема исследуемой системы автоматического управления представлена на рисунке 12.1.

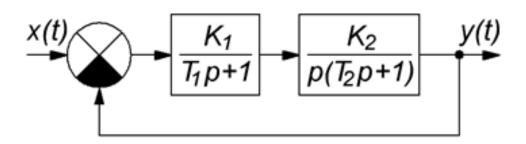



Рисунок 12.2 – Структурная схема исследуемой системы

Параметры системы:

$$K_1 =$$
\_\_\_\_\_;  $K_2 =$ \_\_\_\_;  $T_1 =$ \_\_\_\_\_;  $T_2 =$ \_\_\_\_\_;  $C$ .

2. Запишем передаточную функцию системы в разомкнутом состоянии:

| 3. Находим характеристическое уравнение:                                            |
|-------------------------------------------------------------------------------------|
|                                                                                     |
|                                                                                     |
| 4. Посчитаем значения коэффициентов характеристического уравнения:                  |
|                                                                                     |
|                                                                                     |
| Коэффициенты характеристического уравнения,                                         |
| положительны/отрицательны следовательно, необходимое условие устойчивости           |
| выполняется/не выполняется  5. Составляем матрицу Гурвица:                          |
| э. Составляем матрицу т урвица.  ———————————————————————————————————                |
| 6. Находим значения определителей Гурвица до ( <i>n</i> -1)-го порядк включительно: |
|                                                                                     |
|                                                                                     |
| Вывод: так как определители, то система, то система                                 |
| устойчива/неустойчива                                                               |

7. Выполним компьютерное моделирование рассматриваемой системы в программе SamSim. Получаем график переходной характеристики:



Как видим результаты моделирования  $_{\frac{\text{соответствуют/не соответствуют}}{\text{соответствуют/не соответствуют}}}$  расчетам.

### ЛАБОРАТОРНАЯ РАБОТА 13. ОПРЕДЕЛЕНИЕ КАЧЕСТВЕННЫХ ПОКАЗАТЕЛЕЙ СИСТЕМЫ РЕГУЛИРОВАНИЯ

**Цель работы:** изучение основных законов регулирования. Определение основных показателей качества процесса регулирования.

### Порядок выполнения работы

| 1. В программе SamSim собираем систему автоматического управления        | c |
|--------------------------------------------------------------------------|---|
| ПИД-регулятором, структурная схема которой представлена на рисунке 13.1. |   |
| Параметры системы:                                                       |   |

$$K_p =$$
\_\_\_\_\_;  $T_i =$ \_\_\_\_\_c;  $T_d =$ \_\_\_\_c;  $K_1 =$ \_\_\_\_;  $K_2 =$ \_\_\_\_;  $T_1 =$ \_\_\_c;  $T_2 =$ \_\_\_c;  $\tau =$ \_\_\_\_c.

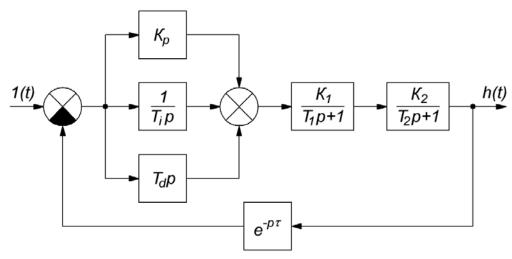




Рисунок 13.1 – Структурная схема моделируемой системы с ПИД-регулятором

2. Получаем график переходного процесса:



3. По полученному графику переходного процесса определяем такие прямые показатели качества, как перерегулирование  $\sigma$ , время регулирования  $t_p$ , степень затухания  $\Psi$ , колебательность n по формулам

Полученные данные заносим в таблицу 13.1.

Таблица 13.1 – Прямые показатели качества САУ с ПИД-регулятором

|      | 1    |     |                    |              |   | 7 1 - 7     | - I - |
|------|------|-----|--------------------|--------------|---|-------------|-------|
| Т, с | τ, c | τ/Τ | $h_{\mathrm{max}}$ | $\sigma$ , % | Ψ | $t_p$ , $c$ | n     |
|      |      |     |                    |              |   |             |       |
|      |      |     |                    |              |   |             |       |

### ЛАБОРАТОРНАЯ РАБОТА 14. ИССЛЕДОВАНИЕ СИСТЕМЫ АВТОМАТИЧЕСКОГО ПОЗИЦИОННОГО РЕГУЛИРОВАНИЯ ТЕМПЕРАТУРЫ ТЕПЛОВОГО ОБЪЕКТА

**Цель работы:** изучение конструкции и принципа действия промышленных позиционных регуляторов. Исследование переходного процесса в системе двухпозиционного регулирования. Оценка качества переходного процесса.

### Порядок выполнения работы

1. В программе SamSim собираем систему двухпозиционного регулирования температуры, функциональная и структурная схемы которой представлены на рисунках 14.1, 14.2.

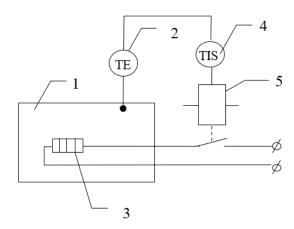



Рисунок 14.1 – Функциональная схема системы двухпозиционного регулирования температуры

На функциональной схеме цифрами обозначены следующие технические средства:

| 1 – | , |
|-----|---|
| 2 – | • |
| 3 – | • |
| 4 – | • |
| 5 – |   |

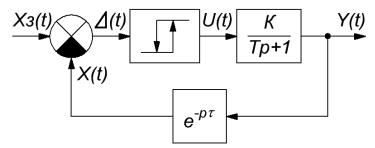



Рисунок 14.2 — Структурная схема системы двухпозиционного регулирования температуры

Параметры системы:

2. Получаем графики переходного процесса и управляющего воздействия U(t):



3. По включению и выключению управляющего воздействия определяем  $2\Sigma$ . Полученные данные заносим в таблицу 14.1.

Таблица 14.1 – Значения зоны неоднозначности

| Температура |       |  |  |
|-------------|-------|--|--|
| откл.       | 22, C |  |  |
|             |       |  |  |
|             |       |  |  |

- 4. По полученному графику переходного процесса определяем  $X_{\max}$  и  $X_{\min}$ , среднее значение размаха автоколебаний  $\Delta X_{\mathfrak{p}}$  и периода автоколебаний  $T_{\mathfrak{a},\mathfrak{p}}$ .
  - 5. Аналитически рассчитываем значения  $\Delta X_p$  и  $T_{a.p}$  по формулам:

### Полученные данные заносим в таблицу 14.2.

Таблица 14.2 – Расчётные данные

| $A_p$ | $2\sigma$ | $2\sigma^*$ | $\Delta X_p$ | $T_{a.p}$ , мин | $\Delta X_{\scriptscriptstyle 9}$ | $T_{a.9}$ , мин |
|-------|-----------|-------------|--------------|-----------------|-----------------------------------|-----------------|
|       |           |             |              |                 |                                   |                 |

#### ЛИТЕРАТУРА

- 1. Автоматика и автоматизация производственных процессов: лабораторный практикум / УО «ВГТУ»; сост. А. А. Кузнецов. Витебск, 2015. 75 с.
- 2. Ким, Д. П. Теория автоматического управления. Линейные системы : учебник и практикум для академического бакалавриата / Д. П. Ким. 3-е изд., испр. и доп. М. : Издательство Юрайт, 2019. 311 с.
- 3. Кузнецов, Э. В. Электротехника и электроника: учебник и практикум для академического бакалавриата, для студентов высших учебных заведений, обучающихся по инженерно-техническим направлениям : [в 3 т.]. Т. 1 : Электрические и магнитные цепи / Э. В. Кузнецов; под общ. ред. В. П. Лунина. 2-е изд., перераб. и доп. Москва: Юрайт, 2019. 255 с.
- 4. Киселев, В. И. Электротехника и электроника: учебник и практикум для академического бакалавриата, для студентов высших учебных заведений, обучающихся по инженерно-техническим направлениям: [в 3 т.]. Т. 2: Электромагнитные устройства и электрические машины / В. И. Киселев, Э. В. Кузнецов, А. И. Копылов; под общ. ред. В. П. Лунина. 2-е изд., перераб. и доп. Москва: Юрайт, 2019. 184 с.
- 5. Шойко, В. П. Автоматическое регулирование в электрических системах: учебное пособие / В. П. Шойко; Министерство образования и науки Российской Федерации, Новосибирский государственный технический университет. 2-е изд. Новосибирск: НГТУ, 2018. 195 с.
- 6. Электротехника и электроника: учебник и практикум для академического бакалавриата, для студентов высших учебных заведений, обучающихся по инженерно-техническим направлениям: [в 3 т.]. Т. 3: Основы электроники и электрические измерения / Э. В. Кузнецов, Е. А. Куликова, П. С. Культиасов, В. П. Лунин; под общ. ред. В. П. Лунина. 2-е изд., перераб. и доп. Москва: Юрайт, 2019. 234 с.

### ЭЛЕКТРОТЕХНИКА, АВТОМАТИКА И АВТОМАТИЗАЦИЯ ПРОИЗВОДСТВЕННЫХ ПРОЦЕССОВ

Рабочая тетрадь

Составители: Клименкова Светлана Александровна Соколова Анна Сергеевна Самусев Артем Михайлович

Редактор *Т.А. Осипова* Корректор *Т.А. Осипова* Компьютерная верстка *А.С. Соколова* 

Подписано к печати <u>01.07.2022</u>. Формат <u>60х90  $^{1}/_{8}$ </u>. Усл. печ. листов <u>5,8.</u> Уч.-изд. листов <u>3,6</u>. Тираж 40 экз. Заказ № 183.

Учреждение образования «Витебский государственный технологический университет» 210038, г. Витебск, Московский пр., 72.

Отпечатано на ризографе учреждения образования «Витебский государственный технологический университет». Свидетельство о государственной регистрации издателя, изготовителя, распространителя печатных изданий № 1/172 от 12 февраля 2014 г. Свидетельство о государственной регистрации издателя, изготовителя, распространителя печатных изданий № 3/1497 от 30 мая 2017 г.