0513.1 13-14 апреля 2022 г.

# УДК 677.014.243

К.А. ЛЕНЬКО, аспирант (ВГТУ) Научный руководитель Н.Н. ЯСИНСКАЯ, д.т.н., доцент (ВГТУ) г. Витебск

# СТЕПЕНЬ СУММАРНОЙ ОЧИСТКИ ХЛОПКА ОТ СОПУТСТВУЮЩИХ ПРИМЕСЕЙ ПОСЛЕ БИООТВАРКИ

Щелочные обработки являются неотъемлемым атрибутом процессов подготовки текстильных материалов из натуральных целлюлозных волокон и удаления сопутствующих примесных соединений [1]. Процесс отварки основан на взаимодействии щелочи (гидроксида натрия) с веществами примесей (пектина, жировоска), расположенных на поверхности единичных природных волокон хлопка. При высокой температуре эти вещества растворяются в водном растворе щелочи и при последующей промывке удаляются с поверхности волокон, в результате чего хлопчатобумажная ткань приобретает повышенную смачиваемость [2].

Вместе с тем действие щелочи, высокой температуры обработки и кислорода оказывает неблагоприятное влияние на волокнообразующий полимер. Кроме того, при щелочной отварке значительная часть реагентов удаляется в ходе промывки, после чего попадает в сточные воды и в атмосферу, нанося огромный ущерб окружающей среде.

В этой связи актуальной является задача разработки комплексных технологий обработки хлопчатобумажных материалов. Эти технологии должны минимизировать агрессивное воздействие химических препаратов на целлюлозу, а также повышать экологичность технологий отделки. Так, в последние десятилетия активизировались исследования в направлении биохимических способов подготовки текстильных материалов из целлюлозных волокон [3]. Особую практическую значимость с точки зрения экологичности и сохранения целлюлозы имеют ферменты, проявляющие активность при низких температурах и в нейтральных средах [4]. Отличием отварки с использованием ферментных препаратов является проведение технологического процесса при температуре 50-60°C; при этом удаление воскообразных примесей осуществляется за счет частичного гидролиза целлюлозы первичной стенки и разрушения кутикулы [5].

Ферменты, вызывающие разрушение целлюлозы во внешних слоях волокна на участках с наименьшей упорядоченностью молекул, способствуют удалению из волокна нецеллюлозных примесей, изменению фрикционных и механических свойств, повышению гигроскопичности и сорбционной способности. Под действием пектиназ гидролитическое расщепление пектиновых веществ происходит в несколько этапов: протопектиназа действует на нерастворимый протопектин путем разрушения связей между компонентами клеточных стенок и пектином, в результате чего последний переходит в растворимое состояние [6].

В течение нескольких лет авторами ведутся работы по биохимической обработке текстильных материалов из целлюлозных волокон. В числе прочего были разработаны эффективные биотехнологии отварки хлопчатобумажных и льняных тканей, а также проведены многочисленные исследования по подбору оптимальных схем обработки и композиций варочных растворов, в ходе которых была доказана эффективность биоотварки ферментами белорусского производства (ООО «Фермент») по показателю капиллярности [7].

Однако, согласно изученным литературным источникам [5,8], не все сопутствующие примеси хлопкового волокна возможно удалить в процессе биоотварки композицией ферментных препаратов. В частности, наибольшую трудность представляет удаление ферментами белковой части азотсодержащих веществ. Они могут быть извлечены только после их разрушения под действием либо горячих растворов щелочей, либо щелочных растворов гипохлорита натрия, либо в присутствии силиката натрия [5].

Таким образом, в данной работе нами поставлена **цель** по определению степени суммарной очистки хлопчатобумажной ткани от сопутствующих примесей после проведения классической щелочной отварки и биоотварки с использованием белорусских ферментных препаратов.

Объектом исследования является суровая хлопчатобумажная ткань полотняного переплетения (ОАО «БПХО» арт.6868) пов. плотностью  $120 \text{ г/м}^2$ .

Проведена отварка данной ткани по двум технологиям: классической щелочной и биотехнологии с использованием ферментных препаратов ООО «Фермент» (Республика Беларусь). Характеристики данных препаратов представлены в таблице 1. Схема отварки и состав варочных растворов представлены на рисунке 1.

Таблица 1. Характеристика используемых ферментных препаратов

| Название препарата | Характеристики                                                    |
|--------------------|-------------------------------------------------------------------|
| Энзитекс ЦКО       | Кислая целлюлаза, активность 10000 ед/г, оптимальные условия      |
|                    | действия рН — от 4,5 до 5,5, рабочая температура — 30-70 °C       |
| Энзитекс Био-К     | Кислая пектиназа, активность 6500 ед/г. Оптимальные условия дей-  |
|                    | ствия pH — от 3,0 до 4,5, рабочая температура — 40 – 60°C.        |
| Энзитекс АТС       | Бактериальная α-амилаза, активность 10000 ед/г, оптимальные усло- |
|                    | вия действия рН — от 5,5 до 6,5, рабочая температура — 40-90 °C   |

Метод определения степени очистки ткани от сопутствующих примесей основан на определении мутности сернокислых растворов целлюлозы. Для определения мутности навеску измельченной ткани массой 0,2 г, предварительно выдержанную в эксикаторе в течение суток при относительной влажности 65%, взвешивают на аналитических весах с точностью до 0,0001 г. Затем ее растворяют в 10 мл 93%-й серной кислоты на холоде в течение 3 часов. Полученный раствор переносят в мерную колбу на 100 мл, добавляют 2 мл раствора неионогенного смачивателя ОП-10 концентрации 1 г/л и разбавляют до метки дистиллированной водой.

0513.3

#### Щелочная отварка

### Замачивание ткани в растворе, содер-

 $\frac{\text{жащем (г/л):}}{\text{Гидроксид натрия}-10;}$  силикат натрия (плотность 1,44) — 33;  $\Pi AB - 0,3;$  гидросульфат натрия (38%-ный) — 3-

## Отварка ткани:

Модуль ванны -50; Продолжительность  $\tau-2$  ч.; Температура раствора  $t-100^{\rm o}{\rm C}.$ 

Промывка горячей и холодной водой

#### **Биоотварка**

### Замачивание ткани в растворе, содер-

 $\frac{\text{жащем (г/л):}}{\Pi AB - 3 \text{ г/л;}}$   $\frac{9 \text{нзитекс ЦКО} - 2,5 \text{ г/л;}}{9 \text{нзитекс Био-К} - 2,5 \text{ г/л;}}$   $\frac{9 \text{нзитекс ATC} - 2 \text{ г/л;}}{9 \text{нзитекс ATC} + 2 \text{ г/л;}}$ уксусная кислота до pH=4-5.

### Отварка ткани:

Модуль ванны -50; Продолжительность  $\tau-1$  ч.; Температура раствора  $t-50^{\rm o}{\rm C}$ .

# Деактивация ферментов<u>:</u>

Продолжительность  $\tau - 10$  мин.; Температура t - 100 °C.

Промывка горячей и холодной водой

Рисунок 1. Схемы отварки хлопчатобумажных тканей

Мутность сернокислых растворов целлюлозы, характеризуемую посредством оптической плотности, определяли на спектрофотометре Solar PB220, предназначенном для измерения спектральных коэффициентов направленного пропускания и оптической плотности в прозрачных жидких растворах, а также для определения концентрации веществ в спектральном диапазоне 190...1100 нм. Измерения проводятся с синим светофильтром при длине волны 295 нм. Кювету сравнения заполняют дистиллированной водой.

Фото растворенных образцов хлопчатобумажных тканей в серной кислоте с добавлением воды и ПАВ представлены на рисунке 2.



Рисунок 2. Сернокислые растворы целлюлозы: а) суровой; б) после щелочной отварки; в) после биоотварки

Визуальная оценка растворов позволяет сделать вывод о наибольшем проценте удаленных сопутствующих примесей ткани после щелочной отварки. Аналогичные результаты демонстрирует гистограмма оптической плотности исследуемых сернокислых растворов хлопчатобумажных тканей (см. рисунок

0513.4 13-14 апреля 2022 г.

3). Наибольший процент примесей позволяет удалить из волокна щелочная отварка ткани: оптическая плотность по сравнению с растворенной суровой тканью падает на 33,1%. Ферментативная отварка удаляет на 19,2% меньше примесей, чем традиционная щелочная отварка хлопчатобумажных тканей.

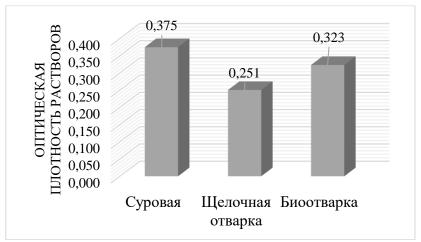



Рисунок 3. Оптическая плотность исследуемых сернокислых растворов

Закономерность подтверждается в литературном обзоре диссертационных исследований [5], согласно которому не все сопутствующие примеси хлопкового волокна возможно удалить в процессе биоотварки.

Таким образом, для достижения требуемой степени очистки от примесей и максимальной смачиваемости целесообразно применять совмещенные биохимические способы подготовки, состоящие из последовательной обработки ферментными препаратами и варочным раствором традиционной щелочной отварки при малых концентрациях его составных компонентов.

Благодаря применению нетоксичных биорасщепляемых ферментов в технологии подготовки хлопчатобумажных текстильных материалов к крашению возможно снижение концентрации реагентов традиционной варочной жидкости путем дополнительного разрыхления структуры волокна и создания условий для более глубокого и полного удаления примесей. Результат мягкого воздействия — сохранение волокнообразующего полимера (а следовательно, прочности волокна), а также снижение негативного влияния на экологическую обстановку.

Данный вывод оставляет вопрос эффективности применения ферментных препаратов в процессе отварки открытым и требующим дальнейших исследований по удалению примесей после совмещенной биохимической отварки хлопка.

### Список литературы:

1. Алеева, С.В. Влияние веществ смачивающего действия на деструкцию хлопкового волокна при щелочной отварке / С.В. Алеева, О.А. Забываева, С.А.

Кокшаров // Технология текстильной промышленности. — 2007. — №297. — С. 64-66.

- 2.Пат. 2336378 С1 Российская Федерация, МПК D06В 5/08. Способ отварки тканей из природных целлюлозных волокон / В. Г. Лапшин, М. Н. Герасимов, Л. А. Гарцева.; заявитель ГОУВПО «ИВГПУ». № 2006146377/12; заявл. 25.12.2006; опубл. 20.10.2008. 6 с.
- 3. Котко, К.А. Ферментативная подготовка хлопчатобумажной пряжи препаратами целлюлолитического действия / К.А. Котко, Н.Н. Ясинская, Н.В. Скобова // Прогрессивные технологии и оборудование: текстиль, одежда, обувь: материалы докладов Международного научно-практического симпозиума / ВГТУ. Витебск, 2020. С. 52-55.
- 4. Ясинская, Н.Н. Применение ферментных препаратов пектинолитического действия для подготовки льняных тканей к колорированию / Н.Н. Ясинская, Н.В. Скобова, К.А. Котко // Вестник Витебского государственного технологического университета. − 2018. − № 2(35). − С. 104-111.
- 5. Барышева Н.В. Разработка основ ферментативной технологии отварки хлопчатобумажных тканей: дис. ... канд. техн. наук: 05.19.02 / Барышева Наталья Викторовна; М.: РГБ, 2006.
- 6. Алеева С.В. Методологические основы совершенствования процессов биохимической модификации льняных текстильных материалов: дис ... док. техн. наук: 05.19.02 / Алеева Светлана Владимировна; М.: ИВГПУ, 2014.
- 7. Котко, К.А. Инновационная биотехнология подготовки целлюлозосодержащих текстильных материалов / К.А. Котко, Н.Н. Ясинская, Н.В. Скобова // Сборник научных работ студентов Республики Беларусь «НИРС 2018» / БГУ. Минск, 2019. С. 168-170.
- 8. Пряжникова В.Г. Создание и применение препарата на базе ПАВ для интенсифицированной отварки хлопчатобумажных тканей : дис ... канд. техн. наук : 05.19.02 / Пряжникова Виктория Георгиевна ; М.: ИВПГУ, 2003.