МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

Учреждение образования

«Витебский государственный технологический университет»

ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ЭЛЕКТРОТЕХНИКИ

ТРАНСФОРМАТОРЫ И ЭЛЕКТРИЧЕСКИЕ ДВИГАТЕЛИ

Методические указания по выполнению расчетно-графических работ для студентов специальности

1-53 01 01-05 «Автоматизация технологических процессов и производств (легкая промышленность)»

Составители:

В. Ф. Куксевич, С. А. Клименкова, Д. В. Черненко

Рекомендовано к изданию редакционно-издательским советом УО «ВГТУ», протокол № 7 от 11.04.2022.

Теоретические основы электротехники. Трансформаторы и электрические двигатели : методические указания по выполнению расчетнографических работ / сост. В. Ф. Куксевич, С. А. Клименкова, Д. В. Черненко. — Витебск : УО «ВГТУ», 2022.-25 с.

Методические указания являются руководством к выполнению расчетно-графических работ по дисциплине «Теоретические основы электротехники» для студентов специальности 1-53 01 01-05 «Автоматизация технологических процессов и производств (легкая промышленность)», содержат общие требования, предъявляемые к выполнению и оформлению расчетно-графических работ, освещают теоретические вопросы подготовки к их выполнению, приводят примеры построения основных характеристик трансформаторов и электрических двигателей.

УДК 621.31

© УО «ВГТУ», 2022

Содержание

Общие требования к выполнению и оформлению	
расчетно-графических работ	4
Задание 1	
Расчет параметров трехфазного трансформатора	5
Задание 2	
Расчет параметров асинхронного двигателя	11
Задание 3	
Расчет параметров двигателя постоянного тока	16
Задание 4	
Выбор типа двигателя производственного механизма	21
Задание 4 Выбор типа двигателя производственного механизма Литература	24
Cotton Cotton	
740	
Chy.	
L,	
740	
	4
	(V)

Общие требования к выполнению и оформлению расчетнографических работ

При выполнении и оформлении расчетно-графических работ необходимо:

- использовать стандартные листы бумаги формата А4;
- на титульном листе указать название университета и кафедры; номер учебной группы; фамилию, имя и отчество студента; название, номер варианта и год выполнения работы;
- в начале каждого задания расчетно-графической работы привести исходные данные варианта задания (номер варианта задания соответствует порядковому номеру фамилии студента в списке вариантов, составленном преподавателем);
 - при расчетах пользоваться международной системой единиц СИ;
- решения сопровождать пояснениями, результаты вычислений записывать с тремя значащими цифрами после запятой;
- формулы приводить сначала в общем виде, затем подставлять числовые значения;
- при наличии значительных однотипных вычислений привести расчет одного из них в качестве примера, результаты однотипных вычислений внести в таблицу;
- арифметическая правильность вычислений и указания размерности являются обязательными;
- графические объекты пронумеровать и снабдить подрисуночными подписями;
- схемы выполнять, используя стандартные изображения элементов схем и стандартные буквенные обозначения их параметров;
- графики и диаграммы выполнить в прямоугольной системе координат с указанием масштабов по осям координат;
- при использовании справочных материалов делать ссылку на перечень литературы, приведенный в конце работы.

Если преподавателем будет предложено переделать какой-либо раздел работы, то в этом случае исправления вносятся в текст при помощи корректирующих материалов, с тем расчетом, чтобы исправленная работа представляла единое целое.

Листы с большим числом исправлений следует переделать полностью. Все замененные листы обязательно приложить к исправленной работе. Замечания преподавателя не разрешается ни стирать, ни заклеивать.

Задание 1

Расчет параметров трехфазного трансформатора

Теоретические сведения

Трансформатор — статический электромагнитный аппарат, предназначенный для преобразования посредством магнитного поля электрической энергии переменного тока одного напряжения в электрическую энергию переменного тока другого напряжения при одной и той же частоте.

Одним из наиболее важных параметров трансформатора является коэффициент трансформации:

$$K = \frac{E_I}{E_2} = \frac{w_I}{w_2} = \frac{U_{1x}}{U_{2x}}.$$

Под номинальной мощностью трансформатора понимают его полную мощность $S_{\scriptscriptstyle H}$ в номинальном режиме:

$$S_{H} = I_{1H}U_{1H} = I_{2H}U_{2H}.$$

Для трехфазного трансформатора

$$S_{\scriptscriptstyle H} = \sqrt{3} I_{1\scriptscriptstyle H} U_{1\scriptscriptstyle H}.$$

Для упрощения расчетов электрических цепей параметры вторичной обмотки приводят к параметрам первичной:

$$U_2' = KU_2, \ I_2' = \frac{1}{K}I_2, \ R_2' = K^2R_2, \ X_2' = K^2X_2, \ Z_H' = K^2Z_H.$$

Из опыта холостого хода трансформатора определяют параметры намагничивающей цепи:

$$Z_0 = \frac{U_{I_H}}{I_0}, \ R_0 = \frac{P_0}{I_0^2}, \ X_0 = \sqrt{Z_0^2 - R_0^2}, \ \cos \varphi_0 = \frac{R_0}{Z_0},$$

где P_0 — мощность, потребляемая трансформатором в режиме холостого хода (мощность магнитных потерь).

Из опыта короткого замыкания определяют параметры схемы замещения трансформатора:

$$Z_{\kappa} = \frac{U_{I\kappa}}{I_{IH}}, \ R_{\kappa} = \frac{P_{\kappa}}{I_{IH}^2}, \ X_{\kappa} = \sqrt{Z_{\kappa}^2 - R_{\kappa}^2}, \ \cos \varphi_{\kappa} = \frac{R_{\kappa}}{Z_{\kappa}},$$

где P_{κ} – мощность электрических потерь в обмотках трансформатора в номинальном режиме.

КПД трансформатора определяют по формуле

$$\eta = \frac{\beta S_{H} \cos \varphi_{2}}{\beta S_{H} \cos \varphi_{2} + \beta^{2} P_{K} + P_{0}},$$

D4720C, где β – коэффициент загрузки трансформатора:

$$\beta = \frac{I_2}{I_{2H}} = \frac{I_1}{I_{1H}}.$$

Содержание задания

Для трехфазного трансформатора с соединением обмоток $Y/Y_0 - 0$, параметры которого ($S_{\iota\iota}$, $U_{\iota\iota}$, U_{20} , $u_{\iota\iota}$, $P_{\iota\iota}$, P_{0} , i_{0}) заданы преподавателем, выполнить следующее:

- коэффициент мощности холостого хода – определить сопротивления первичной и вторичной обмоток R_1 , X_1 , R_2 , X_2 ; сопротивления намагничивающей цепи Z_0 , R_0 , X_0 ; угол магнитных потерь δ ;
- построить внешнюю характеристику $U_2(\beta)$ и зависимость КПД от коэффициента загрузки $\eta(\beta)$ для $\cos \varphi_2 = 0.75$;
- определить, при какой нагрузке трансформатор имеет максимальный КПД;

— изобразить Т-ооразную ...

Пример расчета:

Дано: $S_{\scriptscriptstyle H} = 630~\kappa BA;~U_{\scriptscriptstyle I_{\scriptscriptstyle H}} = 3000~B;~U_{\scriptscriptstyle 20} = 400~B;~u_{\scriptscriptstyle K} = 5~\%;~P_{\scriptscriptstyle K} = 7600~Bm;$ 1680 $Bm;~i_0 = 3,2~\%;~\beta = 0,8~;~\cos\varphi_2 = 0,75~.$ $P_0 = 1680 \text{ Bm}; i_0 = 3.2 \%; \beta = 0.8; \cos \varphi_2 = 0.75.$

1. Определяют номинальный ток первичной обмотки:

$$I_{1H} = \frac{S_H}{\sqrt{3} \cdot U_{1H}} = \frac{630000}{\sqrt{3} \cdot 3000} = 121,244 \text{ A}.$$

2. Определяют ток и коэффициент мощности холостого хода:

$$I_0 = \frac{i_0}{100}I_{1H} = \frac{3.2}{100} \cdot 121,244 = 3,88 A.$$

$$\cos \varphi_0 = \frac{P_0}{\sqrt{3} \cdot U_{I_H} \cdot I_0} = \frac{1680}{\sqrt{3} \cdot 3000 \cdot 3.88} = 0.083.$$

Тогда $\varphi_0=85,24^o$, а угол магнитных потерь: $\delta=90^o-\varphi_0=90^o-85,24$ эташия обмоток:

$$\delta = 90^{\circ} - \varphi_0 = 90^{\circ} - 85,24^{\circ} = 4,76^{\circ}.$$

- 3. Определяют сопротивления обмоток:
- сопротивления короткого замыкания

$$Z_{\kappa} = \frac{U_{\kappa\phi}}{I_{I_H}} = \frac{u_{\kappa} \cdot U_{I_H}}{100 \cdot \sqrt{3} \cdot I_{I_H}} = \frac{5 \cdot 3000}{100 \cdot \sqrt{3} \cdot 121,244} = 0,714 \text{ OM}.$$

$$R_{\kappa} = \frac{P_{\kappa}}{3I_{1\mu}^2} = \frac{7600}{3 \cdot 121,244^2} = 0,172 \text{ Om}.$$

$$3I_{1\mu}^2$$
 $3\cdot 121,244^2$ $X_{\kappa}=\sqrt{Z_{\kappa}^2-R_{\kappa}^2}=\sqrt{0,714^2-0,172^2}=0,693~Oм;$ вления первичной обмотки

- сопротивления первичной обмотки

$$X_1 = X_2 = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = 0.0015 \ Om;$$
 в первичной обмотки
$$R_1 = R_2 = \frac{1}{2} = \frac{1}{2} = 0.086 \ Om.$$
 $X_1 = X_2 = \frac{1}{2} = \frac{1}{2} = 0.086 \ Om;$ в вторичной обмотки

$$X_1 = X_2^{/} = \frac{X_{\kappa}}{2} = \frac{0.693}{2} = 0.347 \text{ Om};$$

- сопротивления вторичной обмотки

$$R_2 = \frac{R_2^{/}}{K^2} = \frac{0.086}{7.5^2} = 0.0015 \ Om$$

где
$$K = \frac{U_{1\text{\tiny H}}}{U_{20}} = \frac{3000}{400} = 7,5$$
 — коэффициент трансформации.

$$X_2 = \frac{X_2^{\prime}}{K^2} = \frac{0.347}{7.5^2} = 0.0062 \ O_{\rm M}.$$

4. Определяют сопротивления намагничивающей цепи:

$$Z_0 = \frac{U_{{\scriptscriptstyle H}\phi}}{I_{0\phi}} = \frac{U_{{\scriptscriptstyle I}{\scriptscriptstyle H}}}{\sqrt{3} \cdot I_{0\phi}} = \frac{3000}{\sqrt{3} \cdot 3,88} = 446,405 \; O_{\scriptscriptstyle M} \, .$$

$$R_0 = \frac{P_0}{3I_0^2} = \frac{1680}{3 \cdot 3,88^2} = 37,198 \text{ Om}$$

$$X_0 = \sqrt{Z_0^2 - R_0^2} = \sqrt{446,405^2 - 37,198^2} = 444,852 \text{ Om}.$$

 $R_0 = \frac{P_0}{3I_0^2} = \frac{1600}{3 \cdot 3,88^2} = 5 \, , . .$ $X_0 = \sqrt{Z_0^2 - R_0^2} = \sqrt{446,405^2 - 37,198^2} = 444,852 \, \text{Ом} \, .$ внешней характеристики $U_2(\beta)$ нах тансформатора 5. Для построения внешней характеристики $U_2(\beta)$ находят падение

$$\Delta U_2\% = \beta \cdot (u_a\% \cdot \cos \varphi_2 + u_p\% \cdot \sin \varphi_2),$$

где $u_a\%$ и $u_p\%$ – соответственно активное и реактивное падения напряжений.

Так как
$$u_a\% = u_\kappa\% \cdot \cos\varphi_\kappa$$
 , где $\cos\varphi_\kappa = \frac{R_\kappa}{Z_\kappa}$, то

$$u_a\% = 5 \cdot \frac{0.172}{0.714} = 1.204\%,$$

$$u_{p}\% = \sqrt{(u_{\kappa}\%)^{2} - (u_{a}\%)^{2}} = \sqrt{5^{2} - 1.204^{2}} = 4.853\%.$$

Напряжение на зажимах вторичной обмотки трансформатора определяют по формуле

$$U_2 = \frac{U_{20}}{100} (100 - \Delta U_2\%).$$

Задаваясь различными значениями β от θ до 1, определяют напряжение $U_{\,2}\,$ и заносят результаты расчета в таблицу 1.1.

Таблица 1.1 – Расчетные данные

β	$\Delta U_2\%$	U_2 , B	η
0	0	400	0
0,01	0,041	399,836	0,737617
0,025	0,103	399,588	0,875178
0,05	0,206	399,176	0,932909
0,1	0,411	398,356	0,964168
0,2	0,823	396,708	0,979437
0,3	1,234	395,064	0,983596
0,4	1,645	393,42	0,984908
0,5	2,056	391,776	0,985073
0,6	2,468	390,128	0,984662
0,7	2,879	388,484	0,983924
0,8	3,29	386,84	0,982982
0,9	3,702	385,192	0,981907
1	4,113	383,548	0,980738

Внешняя характеристика $U_2(\beta)$ изображена на рисунке 1.1.

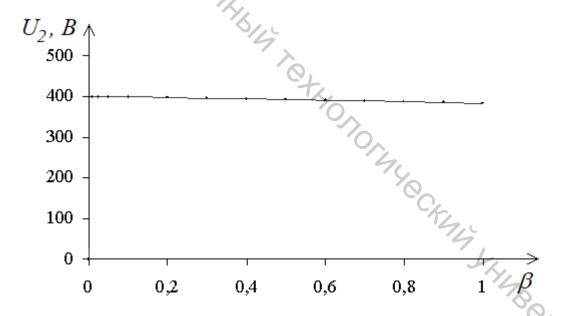


Рисунок 1.1 – Внешняя характеристика трансформатора

6. Для построения зависимости $\eta(\beta)$ производят расчет КПД по формуле

$$\eta = \frac{\beta S_{\scriptscriptstyle H} cos \varphi_2}{\beta S_{\scriptscriptstyle H} cos \varphi_2 + \beta^2 P_{\scriptscriptstyle K} + P_0} \,.$$

Задаваясь различными значениями β от θ до I, определяют КПД η и заносят результаты расчета в таблицу 1.1. Характеристика $\eta(\beta)$ изображена на рисунке 1.2.

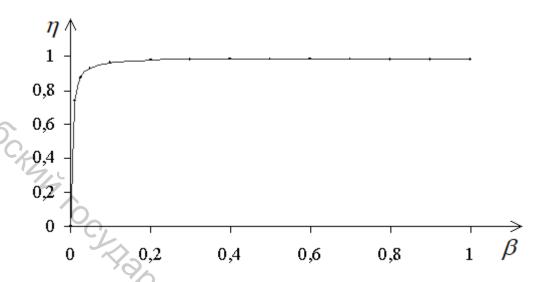


Рисунок 1.2 – Зависимость КПД от коэффициента загрузки трансформатора

7. Определяют, при какой нагрузке трансформатор имеет максимальный КПД.

Так как $\beta_{max} = \sqrt{P_0 \, / \, P_\kappa} = \sqrt{1680 \, / \, 7600} = 0.47$, то определяют максимальный КПД по формуле

$$\eta_{max} = \frac{\beta_{max} S_{_H} cos \varphi_2}{\beta_{max} S_{_H} cos \varphi_2 + \beta_{max}^2 P_{_K} + P_0} = \frac{0.47 \cdot 630 \cdot 0.75}{0.47 \cdot 630 \cdot 0.75 + 0.47^2 \cdot 7600 + 1680} = 0.985101.$$

8. Т-образная схема замещения трансформатора представлена на рисунке 1.3.

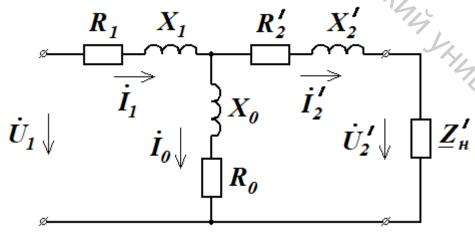


Рисунок 1.3 – Т-образная схема замещения трансформатора

Задание 2

Расчет параметров асинхронного двигателя

Теоретические сведения

Асинхронные двигатели относятся к числу электрических машин переменного тока и представляют собой электромеханические устройства, преобразующие энергию переменного электрического тока в механическую энергию вращения вала. Наибольшее распространение в промышленности получили простые в изготовлении, долговечные трехфазные асинхронные двигатели. При подключении обмоток статора такого двигателя к сети переменного трехфазного тока с частотой f в статоре возникает магнитное поле, вращающееся с частотой:

$$n_0 = \frac{60f}{p}$$
,

где p — число пар полюсов статора.

Магнитное поле наводит в обмотке ротора ЭДС, вызывающую токи, взаимодействие которых с магнитным полем обусловливает возникновение вращающего момента M, приводящего ротор во вращение. Частота вращения ротора будет увеличиваться до некоторого значения n, при котором величина вращающего момента будет равна моменту сил сопротивления M_c , приложенных к валу ротора:

$$M = M_c$$
.

Относительная разность частот вращения магнитного поля и ротора называется скольжением:

$$s = \frac{n_0 - n}{n_0}.$$

В двигательном режиме $0 \le s \le 1$. При пуске n=0 и s=1, при идеальном холостом ходе $n=n_0$ и s=0.

Вращающий момент, развиваемый двигателем, рассчитывается по формуле

$$M = \frac{3pU_{\phi}^2 R_2^{/}}{\omega_0 s \left[\left(R_1 + \frac{R_2^{/}}{s} \right)^2 + X_{\kappa}^2 \right]}.$$

Или по упрощенной формуле

$$M = \frac{2M_{\kappa p}}{\left(\frac{S_{\kappa p}}{S} + \frac{S}{S_{\kappa p}}\right)},$$

где $M_{\kappa p}$ и $s_{\kappa p}$ соответственно, критический момент и критическое скольжение. Определив по справочным данным значения $M_{\kappa p}$, $s_{\kappa p}$ и изменяя величину скольжения в пределах от 0 до 1, получают данные для построения механической характеристики M(s) асинхронного двигателя.

Содержание задания

Для трехфазного асинхронного двигателя с фазным ротором, параметры которого (номинальное напряжение $U_{{\scriptscriptstyle HOM}}$; частота сети f; сопротивления фаз обмоток R_1 , R_2 , X_1 , X_2 ; числа витков на фазу обмоток w_1 , w_2 ; число пар полюсов p) заданы преподавателем, выполнить следующее:

- определить пусковые токи статора и ротора, пусковой вращающий момент, коэффициент мощности при пуске двигателя без пускового реостата; изчение со..., усковой момент; вель. подности при пуске двигателя с распостроить естественную механы. M(s).

 Пример расчета

 Дано: $U_{\text{ном}} = 220 \text{ B}; R_1 = 0.56 \text{ Om}; R_2 = 0.045 \text{ Om}; X_1 = 4.42 \text{ Om}; X_2 = 0.64 \text{ Om}; w_1 = 288; w_2 = 54; p = 3; s_{\text{ном}} = 3\%; f = 50 \Gamma u.$ Решение значение сопротивления пускового реостата, обеспечивающего максимальный

Дано:
$$U_{\text{ном}}=220\,$$
 B; $R_1=0.56\,$ Ом; $R_2=0.045\,$ Ом; $X_1=4.42\,$ Ом, $X_2=0.64\,$ Ом; $w_1=288; w_2=54;$ $p=3;$ $s_{\text{ном}}=3$ %; $f=50\Gamma u$.

$$n = \frac{w_1}{w_2} = \frac{288}{54} = 5{,}333$$

2. Определяют приведенные значения сопротивлений обмотки ротора:

$$R_2^{/} = R_2 \cdot n^2 = 0.045 \cdot 5.333^2 = 1.28 \, Om$$
,
 $X_2^{/} = X_2 \cdot n^2 = 0.64 \cdot 5.333^2 = 18.202 \, Om$.

3. Определяют сопротивления короткого замыкания:

$$R_{\kappa} = R_1 + R_2^{/} = 0,56 + 1,28 = 1,84 \, Om \, .$$

$$X_{\kappa} = X_1 + X_2^{/} = 4,42 + 18,202 = 22,622 \, Om \, .$$

$$Z_{\kappa} = \sqrt{R_{\kappa}^2 + X_{\kappa}^2} = \sqrt{1,84^2 + 22,622^2} = 22,697 \, Om \, .$$

4. Определяют пусковые токи при пуске двигателя с замкнутым накоротко ротором:

$$I_{1\,nyc\kappa} \frac{U_{\phi}}{Z_{\kappa}} = \frac{220}{22,697} = 9,693\,A\,,$$

$$I_{2\,nyc\kappa} = n \cdot I_{1\,nyc\kappa} = 5.333 \cdot 9.693 = 51.693 \, A$$
.

5. Определяют пусковой момент при пуске двигателя с замкнутым накоротко ротором. Для этого предварительно рассчитывают частоту вращения магнитного поля статора:

$$n_0 = \frac{60f}{p} = \frac{60 \cdot 50}{3} = 1000 \text{ об / мин},$$

а также угловую частоту вращения магнитного поля статора:

$$\omega_0 = \frac{2\pi n_0}{60} = \frac{2 \cdot 3,14 \cdot 1000}{60} = 104,67 \text{ pag/c}.$$

Тогда пусковой момент

$$\omega_0 = \frac{2\pi n_0}{60} = \frac{2\cdot 3.14\cdot 1000}{60} = 104.67\ pad/c\ .$$
 усковой момент
$$M_{nyc\kappa} = \frac{3R_2\cdot I_{2nyc\kappa}^2}{\omega_0} = \frac{3\cdot 0.045\cdot 51.693^2}{104.67} = 3.446\ H\cdot \text{M}\ .$$

6. Определяют коэффициент мощности при пуске двигателя с замкнутым накоротко ротором:

$$\cos \varphi_{nyc\kappa} = \frac{R_{\kappa}}{Z_{\kappa}} = \frac{1,84}{22,697} = 0.081.$$

7. Определяют сопротивление пускового реостата из условия, что вращающий момент достигает максимального значения при $s_{\kappa p} = (R_2^{/} + R_p^{/})/X_{\kappa} = 1$, где $R_p^{/}$ — приведенное значение сопротивления пускового реостата.

Так как

$$R_{p}^{/} = X_{\kappa} - R_{2}^{/} = 22,622 - 1,28 = 21,342 \, O_{M}$$

то сопротивление пускового реостата

$$R_p = \frac{R_p^{\prime}}{n^2} = \frac{21,342}{5,333^2} = 0,75 \, O_M.$$

8. Определяют величину максимального пускового момента и коэффициента мощности при пуске двигателя с реостатом. Для этого предварительно находят значение пускового тока ротора $I_{2\,nyc\kappa}$ при пуске двигателя с реостатом, которое определяется из соотношений

$$Z_{nyc\kappa} = \sqrt{(R_\kappa + R_p^{/})^2 + X_\kappa^2} = \sqrt{(1,84 + 21,342)^2 + 22,622^2} = 32,39\,\mathrm{Om}\,.$$

$$I_{1 nyc\kappa} = \frac{U_{\phi}}{Z_{nyc\kappa}} = \frac{220}{32,39} = 6,792 A.$$

$$I_{2\,nyc\kappa} = n \cdot I_{1\,nyc\kappa} = 5,333 \cdot 6,792 = 36,222\,A$$
.

Тогда максимальный пусковой момент при пуске двигателя с реостатом:

$$M_{\textit{nyck max}} = \frac{3(R_2 + R_p) \cdot I_{2\,\textit{nyck}}^2}{\omega_0} = \frac{3 \cdot (0.045 + 0.75) \cdot 36.222^2}{104.67} = 29.9 \, H \cdot \text{M} \, .$$

Коэффициент мощности при пуске двигателя с реостатом

$$\cos \varphi_{nyc\kappa} = \frac{R_{\kappa} + R_{p}^{/}}{Z_{nyc\kappa}} = \frac{1,84 + 21,342}{32,39} = 0,716.$$

9. Строят естественную механическую характеристику M(s) по уравнению

$$M = \frac{2M_{\kappa p}}{\left(\frac{S_{\kappa p}}{S} + \frac{S}{S_{\kappa p}}\right)},$$

где
$$s_{\kappa p} = \frac{R_2^{/}}{\sqrt{R_I^2 + X_{\kappa}^2}} = \frac{1,28}{\sqrt{0,56^2 + 22,622^2}} = 0,0565$$
,

$$M_{\kappa p} = \frac{3U_{\phi}^2}{2\omega_0(R_I + \sqrt{R_I^2 + X_{\kappa}^2})} = \frac{3 \cdot 220^2}{2 \cdot 104,67 \cdot (0,56 + \sqrt{0,56^2 + 22,622^2})} = 29,91 H \cdot \text{м}.$$
 Таким образом,
$$M = \frac{2 \cdot 29,91}{\frac{0,0565}{s} + \frac{s}{0,0565}} = \frac{59,82}{\frac{0,0565}{s} + \frac{s}{0,0565}}.$$
 Задаваясь различными значениями s от θ до θ , определяют вращающий

Таким образом,
$$M = \frac{2 \cdot 29,91}{\frac{0,0565}{s} + \frac{s}{0.0565}} = \frac{59,82}{\frac{0,0565}{s} + \frac{s}{0.0565}}$$

Задаваясь различными значениями s от θ до l, определяют вращающий момент M и заносят результаты расчета в таблицу 2.1.

Yo.			
Таблица 2.1 – Расчетные данные			
S	M , $H \cdot M$		
	171 ,11		
0	0		
0,01	10,3		
0,03	24,8		
0,0565	29,9		
0,07	29,2		
0,1	25,6		
0,2	15,7		
0,3	10,9		
0,4	8,3		
0,5	6,7		
0,6	5,6		
0,7	4,8		
0,8	4,2		
0,9	3,7		
1	3,4		

74 LAMBOOC Естественная механическая характеристика M(s) изображена на рисунке 2.1.

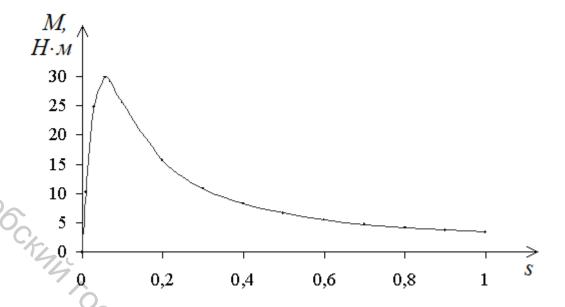


Рисунок 2.1 – Естественная механическая характеристика асинхронного двигателя

Задание 3

Расчет параметров двигателя постоянного тока

Теоретические сведения

Двигатели постоянного тока представляют собой электромеханические устройства, преобразующие энергию постоянного электрического тока в механическую энергию вращения вала.

Основными частями машин постоянного тока являются: неподвижный статор, вращающийся якорь и щеточно-коллекторное устройство. Функция статора — создать на поверхности якоря магнитное поле с требуемой индукцией В. Обмотка якоря состоит из катушек, уложенных в пазы и соединенных между собой, то есть представляет собой замкнутый контур. Щеточно-коллекторное устройство осуществляет контакт обмотки якоря с внешней цепью.

Если якорь подключить к внешнему источнику, то взаимодействие тока якоря с магнитным полем статора обеспечивает возникновение вращающегося момента, действующего на якорь и приводящего его во вращение.

Связь между частотой вращения якоря n и вращающим моментом M является механической характеристикой и выражается формулой

$$n = \frac{U}{K_e \Phi} - \frac{R_g}{K_e K_M \Phi^2} M,$$

где $R_{\rm s}$ – сопротивление якоря; $K_{\rm e}$ – коэффициент ЭДС; $K_{\rm m}$ – коэффициент момента.

характеристика представляет собой Механическая прямую, проходящую через начало координат. Для ее построения достаточно двух точек:

- 1) точка номинального режима с координатами (M_{HOM} ; n_{HOM});
- 2) точка идеального холостого хода с координатами (M=0; $n=n_0$).

Частоту идеального холостого хода можно определить, используя данные для номинального режима:

$$n_0 = n_{\text{HOM}} \frac{U_{\text{HOM}}}{U_{\text{HOM}} - I_{\text{SHOM}} R_{\text{S}}}.$$

При пуске двигателя для уменьшения пускового тока в цепь якоря включается пусковой реостат, сопротивление которого рассчитывается, исходя из формулы:

$$I_{\mathit{Anyck}} = \frac{U}{R_{\mathit{g}} + R_{\mathit{n}}}.$$

рмулы: $I_{\mathit{япуск}} = \frac{U}{R_{\mathit{g}} + R_{\mathit{n}}}\,.$ Обычно принимают $I_{\mathit{япуск}} = (1.5 \div 2.5)I_{\mathit{яном}}\,.$

Содержание задания

Для двигателя постоянного тока с параллельным возбуждением, номинальные параметры которого ($U_{\text{ном}},\ P_{\text{ном}},\ n_{\text{ном}},\ \eta_{\text{ном}}$) и величины потерь мощности $\Delta P_{\mathfrak{g}}$ и $\Delta P_{\mathfrak{g}}$ заданы преподавателем, выполнить следующее:

- определить ток в цепи возбуждения; ток якоря при номинальной нагрузке; пусковой вращающий момент при пуске двигателя с пусковым реостатом; частоту вращения якоря при номинальном моменте на валу двигателя и включении в цепь якоря добавочного сопротивления, равного $3R_s$;
- построить естественную и реостатную механические характеристики двигателя n(M).

двигателя
$$n(M)$$
.
 Пример расчета
 Дано: $P_{\text{ном}}=29~\kappa\text{Bm};~U_{\text{ном}}=220~B;~n_{\text{ном}}=2520~o\text{б/мин};~\Delta P_{\text{g}}=5,0~\%;~\Delta P_{\text{g}}=4,3~\%;~\eta_{\text{ном}}=86,0~\%.$

Решение:

1. Определяют мощность, потребляемую двигателем из сети:

$$P_{I_{HOM}} = \frac{P_{HOM}}{\eta_{HOM}} \cdot 100\% = \frac{29}{86} \cdot 100\% = 33,72 \,\kappa Bm$$
.

2. Определяют ток, потребляемый двигателем при номинальной нагрузке:

$$I_{\text{HOM}} = \frac{P_{I\text{HOM}}}{U_{\text{HOM}}} = \frac{33,72 \cdot 10^3}{220} = 153,27 A.$$

$$I_{\text{ном}} = \frac{I_{\text{Ном}}}{U_{\text{ном}}} = \frac{33,72 \cdot 10}{220} = 153,27 \, A \, .$$
3. Определяют ток в цепи возбуждения:
$$I_{\theta} = \frac{\Delta P_{\theta} \cdot P_{\text{Ном}}}{100 U_{\text{ном}}} = \frac{4,3 \cdot 33,72 \cdot 10^3}{100 \cdot 220} = 6,59 \, A \, .$$
4. Определяют ток якоря при номинальной нагрузке:

4. Определяют ток якоря при номинальной нагрузке:

$$I_{\text{\tiny SHOM}} = I_{\text{\tiny HOM}} - I_{\scriptscriptstyle 6} = 153,\!27 - 6,\!59 = 146,\!68\,A\,.$$

5. Определяют номинальный вращающий момент:

$$M_{\text{HOM}} = 9550 \frac{P_{\text{HOM}}}{n_{\text{HOM}}} = 9550 \frac{29}{2520} = 109,9 \,H \cdot M.$$

6. Определяют пусковой момент двигателя при пуске двигателя с Пусковой ичения пускового тока, ляют сопротивление обмотки ж. $R_{\mathcal{A}} = \frac{\Delta P_{\mathcal{A}} \cdot P_{I_{HOM}}}{100I_{\mathcal{A}HOM}^2} = \frac{5 \cdot 33,72 \cdot 10^3}{100 \cdot 146,68^2} = 0,078 \, \text{Om}.$ пусковым реостатом. Пусковой реостат должен иметь сопротивление, достаточное для ограничения пускового тока до $I_{nvc\kappa} = 2.5I_{\text{я ном}}$.

Вначале определяют сопротивление обмотки якоря:

$$R_{_{\mathcal{A}}} = \frac{\Delta P_{_{\mathcal{A}}} \cdot P_{_{IHOM}}}{100I_{_{\mathcal{S}HOM}}^2} = \frac{5 \cdot 33,72 \cdot 10^3}{100 \cdot 146,68^2} = 0,078 \, O_{M}$$

Тогда сопротивление реостата

$$R_p = \frac{U_{_{HOM}}}{2.5I_{_{RHOM}}} - R_{_{R}} = \frac{220}{2.5 \cdot 146.68} - 0.078 = 0.522 \, O_{M} \, .$$

Так как вращающий момент двигателя определяется уравнением

$$M = C_{M} \Phi I_{g}$$

то для режима номинальной нагрузки данное выражение принимает вид:

$$M_{HOM} = C_M \Phi I_{gHOM}$$

а для пускового режима

$$M_{nyc\kappa} = C_{\mathcal{M}} \Phi I_{\mathit{gnyc\kappa}}.$$

Полагая магнитный поток в двигателе постоянным, берут отношение моментов

$$\frac{M_{\text{HOM}}}{M_{\text{nyck}}} = \frac{I_{\text{ЯНОМ}}}{I_{\text{Япуск}}}.$$

Тогда пусковой момент двигателя при пуске двигателя с пусковым реостатом

$$M_{nyc\kappa} = M_{HOM} \frac{I_{nyc\kappa}}{I_{shom}} = 109,9 \frac{2,5 \cdot 146,68}{146,68} = 274,8 \, H \cdot M \, .$$

7. Определяют частоту вращения якоря при номинальном моменте на валу двигателя и включении в цепь якоря добавочного сопротивления, равного $3R_{\rm g}$. Полагая неизменными величины магнитного потока и номинального момента, из выражения $M_{\rm HOM} = C_{\rm M} \Phi I_{\rm SHOM}$ получают, что $I_{\rm SHOM}$ останется прежним. Тогда частота вращения якоря

$$n = \frac{U_{\scriptscriptstyle HOM} - (R_{\scriptscriptstyle S} + 3R_{\scriptscriptstyle S})I_{\scriptscriptstyle SHOM}}{C_e \Phi_{\scriptscriptstyle HOM}} = \frac{(U_{\scriptscriptstyle HOM} - (R_{\scriptscriptstyle S} + 3R_{\scriptscriptstyle S}) \cdot I_{\scriptscriptstyle SHOM}) \cdot n_{\scriptscriptstyle HOM}}{E_{\scriptscriptstyle HOM}} = \frac{(U_{\scriptscriptstyle HOM} - (R_{\scriptscriptstyle S} + 3R_{\scriptscriptstyle S}) \cdot I_{\scriptscriptstyle SHOM}) \cdot n_{\scriptscriptstyle HOM}}{E_{\scriptscriptstyle HOM}} = \frac{(U_{\scriptscriptstyle HOM} - (R_{\scriptscriptstyle S} + 3R_{\scriptscriptstyle S}) \cdot I_{\scriptscriptstyle SHOM}) \cdot n_{\scriptscriptstyle HOM}}{E_{\scriptscriptstyle HOM}} = \frac{(U_{\scriptscriptstyle HOM} - (R_{\scriptscriptstyle S} + 3R_{\scriptscriptstyle S}) \cdot I_{\scriptscriptstyle SHOM}) \cdot n_{\scriptscriptstyle HOM}}{E_{\scriptscriptstyle HOM}} = \frac{(U_{\scriptscriptstyle HOM} - (R_{\scriptscriptstyle S} + 3R_{\scriptscriptstyle S}) \cdot I_{\scriptscriptstyle SHOM}) \cdot n_{\scriptscriptstyle HOM}}{E_{\scriptscriptstyle HOM}} = \frac{(U_{\scriptscriptstyle HOM} - (R_{\scriptscriptstyle S} + 3R_{\scriptscriptstyle S}) \cdot I_{\scriptscriptstyle SHOM}) \cdot n_{\scriptscriptstyle HOM}}{E_{\scriptscriptstyle HOM}} = \frac{(U_{\scriptscriptstyle HOM} - (R_{\scriptscriptstyle S} + 3R_{\scriptscriptstyle S}) \cdot I_{\scriptscriptstyle SHOM}) \cdot n_{\scriptscriptstyle HOM}}{E_{\scriptscriptstyle HOM}} = \frac{(U_{\scriptscriptstyle HOM} - (R_{\scriptscriptstyle S} + 3R_{\scriptscriptstyle S}) \cdot I_{\scriptscriptstyle SHOM}) \cdot n_{\scriptscriptstyle HOM}}{E_{\scriptscriptstyle HOM}} = \frac{(U_{\scriptscriptstyle HOM} - (R_{\scriptscriptstyle S} + 3R_{\scriptscriptstyle S}) \cdot I_{\scriptscriptstyle SHOM}) \cdot n_{\scriptscriptstyle HOM}}{E_{\scriptscriptstyle HOM}} = \frac{(U_{\scriptscriptstyle HOM} - (R_{\scriptscriptstyle S} + 3R_{\scriptscriptstyle S}) \cdot I_{\scriptscriptstyle SHOM}) \cdot n_{\scriptscriptstyle HOM}}{E_{\scriptscriptstyle HOM}} = \frac{(U_{\scriptscriptstyle HOM} - (R_{\scriptscriptstyle S} + 3R_{\scriptscriptstyle S}) \cdot I_{\scriptscriptstyle SHOM}) \cdot n_{\scriptscriptstyle HOM}}{E_{\scriptscriptstyle HOM}} = \frac{(U_{\scriptscriptstyle HOM} - (R_{\scriptscriptstyle S} + 3R_{\scriptscriptstyle S}) \cdot I_{\scriptscriptstyle SHOM}) \cdot n_{\scriptscriptstyle HOM}}{E_{\scriptscriptstyle HOM}} = \frac{(U_{\scriptscriptstyle HOM} - (R_{\scriptscriptstyle S} + 3R_{\scriptscriptstyle S}) \cdot I_{\scriptscriptstyle SHOM}) \cdot n_{\scriptscriptstyle HOM}}{E_{\scriptscriptstyle HOM}} = \frac{(U_{\scriptscriptstyle HOM} - (R_{\scriptscriptstyle S} + 3R_{\scriptscriptstyle S}) \cdot I_{\scriptscriptstyle SHOM}) \cdot n_{\scriptscriptstyle HOM}}{E_{\scriptscriptstyle HOM}} = \frac{(U_{\scriptscriptstyle HOM} - (R_{\scriptscriptstyle S} + 3R_{\scriptscriptstyle S}) \cdot I_{\scriptscriptstyle SHOM}) \cdot n_{\scriptscriptstyle HOM}}{E_{\scriptscriptstyle HOM}} = \frac{(U_{\scriptscriptstyle HOM} - (R_{\scriptscriptstyle S} + 3R_{\scriptscriptstyle S}) \cdot I_{\scriptscriptstyle SHOM}) \cdot n_{\scriptscriptstyle HOM}}{E_{\scriptscriptstyle HOM}} = \frac{(U_{\scriptscriptstyle HOM} - (R_{\scriptscriptstyle S} + 3R_{\scriptscriptstyle S}) \cdot I_{\scriptscriptstyle SHOM}) \cdot n_{\scriptscriptstyle HOM}}{E_{\scriptscriptstyle HOM}} = \frac{(U_{\scriptscriptstyle HOM} - (R_{\scriptscriptstyle S} + 3R_{\scriptscriptstyle S}) \cdot I_{\scriptscriptstyle HOM}) \cdot n_{\scriptscriptstyle HOM}}{E_{\scriptscriptstyle HOM}} = \frac{(U_{\scriptscriptstyle HOM} - (R_{\scriptscriptstyle S} + 3R_{\scriptscriptstyle S}) \cdot I_{\scriptscriptstyle HOM}) \cdot n_{\scriptscriptstyle HOM}}{E_{\scriptscriptstyle HOM}} = \frac{(U_{\scriptscriptstyle HOM} - (R_{\scriptscriptstyle S} + 3R_{\scriptscriptstyle S}) \cdot I_{\scriptscriptstyle HOM}) \cdot n_{\scriptscriptstyle HOM}}{E_{\scriptscriptstyle HOM}} = \frac{(U_{\scriptscriptstyle HOM} - (R_{\scriptscriptstyle S} + 3R_{\scriptscriptstyle S}) \cdot I_{\scriptscriptstyle HOM}) \cdot n_{\scriptscriptstyle HOM}}{E_{\scriptscriptstyle HOM}} = \frac{(U_{\scriptscriptstyle HOM} - (R_{\scriptscriptstyle S} + 3R_{\scriptscriptstyle S}) \cdot I_{\scriptscriptstyle HOM}) \cdot n_{\scriptscriptstyle HOM}}{E_{\scriptscriptstyle HOM}} = \frac{(U_{\scriptscriptstyle HOM} - (R_{\scriptscriptstyle S} + 3R_{\scriptscriptstyle S}) \cdot I_{\scriptscriptstyle HOM}) \cdot n_{\scriptscriptstyle HOM}}{E_{\scriptscriptstyle HOM}} = \frac{(U_{\scriptscriptstyle HOM} - (R_{\scriptscriptstyle S} + 3R_{\scriptscriptstyle S}) \cdot I_{\scriptscriptstyle HOM}) \cdot n_{\scriptscriptstyle HOM}}{E_{\scriptscriptstyle HOM}} = \frac{(U_{\scriptscriptstyle HOM} - (R_{\scriptscriptstyle S} + 3R_{\scriptscriptstyle S}) \cdot I_{\scriptscriptstyle HOM})}{E_{\scriptscriptstyle HOM}} = \frac{(U_{\scriptscriptstyle HOM} - (R_{\scriptscriptstyle S} + 3R_{\scriptscriptstyle S}) \cdot I_{\scriptscriptstyle HOM})}{E_{\scriptscriptstyle HOM}} = \frac{(U_{\scriptscriptstyle HOM} - (R_{\scriptscriptstyle S} + 3R_{\scriptscriptstyle S}$$

$$=\frac{(U_{_{HOM}}-(R_{_{S}}+3R_{_{S}})\cdot I_{_{SHOM}})\cdot n_{_{HOM}}}{(U_{_{HOM}}-R_{_{S}}\cdot I_{_{SHOM}})}=\frac{(220-(0.078+3\cdot 0.078)\cdot 146.68)\cdot 2520}{(220-0.078\cdot 146.68)}=$$

8. Строят естественную механическую характеристику n(M) по двум точкам. Первая точка — точка холостого хода. Координатами точки холостого хода являются: значение момента M=0 и значение частоты вращения:

$$n = \frac{U_{_{HOM}}}{C_e \varPhi_{_{HOM}}} = \frac{U_{_{HOM}} \cdot n_{_{HOM}}}{E_{_{HOM}}} = \frac{U_{_{HOM}} \cdot n_{_{HOM}}}{U_{_{HOM}} - R_{_{\it H}} I_{_{\it SHOM}}} = \frac{220 \cdot 2520}{220 - 0.078 \cdot 146.68} = 2658.24\,o\text{G}\,/\,\text{мин}.$$

Вторая точка — точка номинальной нагрузки — имеет координаты: $M = M_{_{HOM}} = 109,9\,H\cdot {\rm M}$, $n = n_{_{HOM}} = 2520\,{\rm o}\,{\rm G}$ / мин.

Естественная механическая характеристика (1) изображена на рисунке 3.1.

9. Строят реостатную механическую характеристику n(M) по двум точкам. Первая точка — точка холостого хода. Координаты точки холостого хода аналогичны координатам, рассчитанным в п. 8 для естественной механической характеристики: M=0 и n=2658,24 об / мин.

Координатами второй точки — точки номинальной нагрузки — являются: значение номинального вращающего момента $M = M_{HOM} = 109,9 \, H \cdot M$ и рассчитанное в п. 7 значение частоты вращения якоря $n = 2105,3 \, o6 \, / \, MUH$ при включении в его цепь добавочного сопротивления.

Реостатная механическая характеристика (2) изображена на рисунке 3.1.

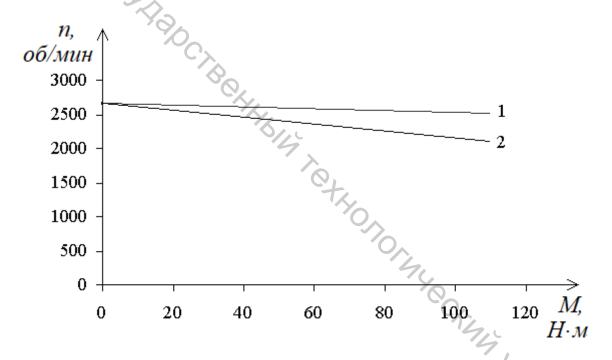


Рисунок 3.1 – Механические характеристики двигателя постоянного тока

Задание 4

Выбор типа двигателя производственного механизма

Теоретические сведения

Выбор типа двигателя – один из ответственных этапов проектирования электропривода, так как именно двигатель в значительной степени определяет технические и экономические качества привода. Из многочисленных типов двигателей переменного и постоянного тока для привода той или иной производственной машины должен быть выбран такой, который наиболее полно удовлетворял бы технико-экономическим требованиям. Это значит, что двигатель должен быть наиболее простым в управлении, надежным в эксплуатации, с наименьшей стоимостью, массой и габаритами, а также с высокими энергетическими показателями. В сравнении всеми существующими типами двигателей этим требованиям в наибольшей мере отвечают асинхронные двигатели с короткозамкнутым ротором. При выборе двигателя такого типа необходимо определить, выполняются ли технические требования: допустимое уменьшение скорости при увеличении нагрузки, допустимая частота повторных включений, возможность быстрого и надежного пуска.

В напряженных режимах работы привода, с большой частотой включений, где требуется повышенный или ограниченный пусковой момент, а также регулирование частоты вращения в узких пределах, применяют асинхронные двигатели с контактными кольцами. Для нерегулируемых приводов средней и большой мощности, работающих в продолжительном режиме с редкими пусками, рекомендуется применять синхронные двигатели. Они отличаются более высоким КПД и допускают регулирование коэффициента мощности за счет компенсации реактивной мощности. При необходимости, плавного и глубокого регулирования скорости, а также при большой частоте включений, применяются двигатели постоянного тока.

При выборе мощности двигателя основными исходными данными являются требуемые нагрузочные моменты, которые должны быть приложены к валу механизма, т. е. необходимо иметь нагрузочные диаграммы электропривода P(t) или M(t), которые могут быть заданы в виде графика или таблицы.

Содержание задания

Для заданных преподавателем параметров режима нагрузки (t_i, P_i) и частоты вращения двигателя электропривода производственного механизма:

- построить нагрузочную диаграмму P(t);

 выбрать тип электрического двигателя и проверить его по перегрузочной способности.

По технологическим условиям использовать асинхронный двигатель с короткозамкнутым ротором. Помещение, где установлен двигатель, должно быть сухим, без пыли и грязи.

Пример расчета

Дано: n=980~oб / мин ; $t_1=20c$; $t_2=30c$; $t_3=15c$; $P_1=12~\kappa Bm$; $P_2=8~\kappa Bm$; $P_3=6~\kappa Bm$.

Решение

По данным режима нагрузки строят нагрузочную диаграмму P(t) производственного механизма (рис. 4.1).

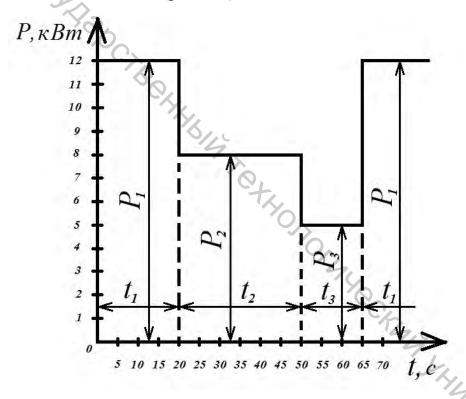


Рисунок 4.1 – Нагрузочная диаграмма производственного механизма

В данном случае режим работы представляет собой длительную переменную нагрузку. Мощность двигателя подбирают при подобных режимах работы по эквивалентной мощности, которая равна:

$$P_{\mathfrak{K}B} = \sqrt{\sum_{k=1}^{n} (P_k^2 t_k)/t_{\mathcal{U}}} ,$$

где t_{y} – время цикла работы,

$$t_u = t_1 + t_2 + t_3 = 20 + 30 + 15 = 65c$$
.

Тогда

$$P_{_{9K6}} = \sqrt{\frac{12^2 \cdot 20 + 8^2 \cdot 30 + 6^2 \cdot 15}{65}} = 9,06 \text{ } \kappa Bm \text{ }.$$

Из справочника [1] в качестве электрического двигателя выбирают асинхронный короткозамкнутый двигатель в защищенном исполнении типа A2-61-6У3 со следующими параметрами: $n_0 = 1000 \, ob \, / \, muh$; $P_{HOM} = 10 \, \kappa Bm$; $s_{hom} = 3.5 \%$; $\eta_{hom} = 87 \%$; $M_{nyck} / M_{hom} = 1.2$; $M_{max} / M_{hom} = 1.8$.

В ряде случаев момент нагрузки на отдельных участках работы может оказаться больше максимального момента, и двигатель может остановиться. Поэтому после выбора типа двигателя его необходимо проверить перегрузочной способности, исходя из условия $M_{max\ cm} \leq M_{max\ don}$, где - максимальный статический момент двигателя, $M_{max \, don}$ максимально допустимый момент двигателя.

Для асинхронного двигателя принимают $M_{max don} = 0.9 M_{max}$, где M_{max} – максимальный (критический) момент двигателя.

Рассчитывают:

номинальную частоту вращения двигателя

$$n_{\text{ном}} = n_0 (1 - s_{\text{ном}}) = 1000 (1 - 0.035) = 965 \, \text{об} \, / \, \text{мин} \, ;$$
 альный момент двигателя

– номинальный момент двигателя

ную частоту вращения двигателя
$$M_{nom} = n_0(1-s_{nom}) = 1000(1-0.035) = 965\,o6\,/\,\text{мин}\;;$$
 ный момент двигателя
$$M_{nom} = \frac{9550P_{nom}}{n_{nom}} = \frac{9550\cdot 10}{965} = 98.96\,H\cdot\text{м}\;;$$
 ьный (критический) момент двигателя
$$M_{max} = 1.8M_{nom} = 1.8\cdot 98.96 = 178.13\,H\cdot\text{м}\;;$$
 ьный статический момент двигателя
$$M_{max} = \frac{9550P_1}{n} = \frac{9550\cdot 12}{980} = 116.94\,H\cdot\text{м}\;.$$

- максимальный (критический) момент двигателя

$$M_{max} = 1.8 M_{HOM} = 1.8 \cdot 98.96 = 178.13 H \cdot M_{T}$$

- максимальный статический момент двигателя

$$M_{max\ cm} = \frac{9550P_I}{n} = \frac{9550 \cdot 12}{980} = 116,94 \, H \cdot M$$

Таким образом, перегрузочной способности выбранный двигатель удовлетворяет, так как выполняется условие:

$$0.9M_{max} = 0.9 \cdot 178.13 = 160.32 \, H \cdot M > M_{max\ cm} = 116.94 \, H \cdot M$$
.

Литература

- 1. Справочник по электрическим машинам : в 2 т. Т. 1 / под общ. ред. И. П. Копылова и Б. К. Клокова. Москва : Энергоатомиздат, 1988. 456 с.
- 2. Бессонов, Л. А. Теоретические основы электротехники. Электрические цепи / Л. А. Бессонов. Москва : Гардарики, 2007. 704 с.
- 3. Сборник задач по теоретическим основам электротехники / под ред. Л. А. Бессонова. – Москва : Высшая школа, 2003. – 528 с.
- 4. Электротехника и основы электроники : методические указания и контрольные задания / Б. П. Соколов, В. Б. Соколов. Москва : Высшая школа, 1985. 128 с.
- 5. Брускин, Д. Э. Электрические машины и микромашины / Д. Э. Брускин, А. Е. Зохорович, В. С. Хвостов. Москва : Высшая школа, 1990. 328 с.
- 6. Борисов, Ю. М. Электротехника / Ю. М. Борисов [и др.]. Москва : Энергоиздат, 1985. 559 с.
- 7. Касаткин, А. С. Электротехника / А. С. Касаткин, М. В. Немцов. Москва : Высшая школа, 1983. 442 с.
- 8. Электротехника / под ред. В. Г. Герасимова. Москва : Высшая школа, 1985.-768 с.
- 9. Электротехника / под ред. В. С. Пантюшина. Москва : Высшая школа, 1976. 593 с.
- 10. Теоретические основы электротехники : методические указания к выполнению контрольных работ / А. В. Ильющенко, В. Ф. Куксевич. Витебск : УО «ВГТУ», 2011. 43 с.

ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ЭЛЕКТРОТЕХНИКИ ТРАНСФОРМАТОРЫ И ЭЛЕКТРИЧЕСКИЕ ДВИГАТЕЛИ Методические указания по выполнению расчетно-графических работ

Составители: Куксевич Виталий Федорович Клименкова Светлана Александровна Черненко Дмитрий Владимирович

Редактор Т.А. Осипова Корректор А.В. Пухальская Компьютерная верстка В.Ф. Куксевич

Подписано к печати <u>14.04.2022.</u> Формат <u>60х90 $^{1}/_{16}$ </u>. Усл. печ. листов <u>1,6.</u> Уч.-изд. листов <u>2,0.</u> Тираж <u>30</u> экз. Заказ № <u>110.</u>

Учреждение образования «Витебский государственный технологический университет» 210038, г. Витебск, Московский пр., 72. Отпечатано на ризографе учреждения образования «Витебский государственный технологический университет». Свидетельство о государственной регистрации издателя, изготовителя, распространителя печатных изданий № 1/172 от 12 февраля 2014 г. Свидетельство о государственной регистрации издателя, изготовителя, распространителя печатных изданий № 3/1497 от 30 мая 2017 г.