ОПРЕДЕЛЕНИЕ ТЯЖЕЛЫХ МЕТАЛЛОВ В САХАРОЗЕ ИНВЕРСИОННОЙ ВОЛЬТАМПЕРОМЕТРИЕЙ

STRIPPING VOLTAMMETRY DETERMINATION OF HEAVY METALS IN THE SUGAR

Н.П. Матвейко*, А.М. Брайкова, В.В. Садовский

Белорусский государственный экономический университет УДК 543.253

M.P. Matveika*, A.M. Braikova, V.V. Sadovski

Belarusian State Economic University

РЕФЕРАТ

ТЯЖЕЛЫЕ МЕТАЛЛЫ, СОДЕРЖАНИЕ, ОБРАЗ-ЦЫ САХАРА, ИНВЕРСИОННАЯ ВОЛЬТАМПЕ-РОМЕТРИЯ

Методом инверсионной вольтамперометрии установлено, что во всех восьми изученных образцах сахара содержатся $\mathbf{Z} n$ (1,1–2,9 мг/кг) и $\mathbf{H} \mathbf{g}$ (0,001–0,009 мг/кг), причем $\mathbf{Z} \mathbf{n}$ содержится в количествах, превышающих содержание $\mathbf{H} \mathbf{g}$ в 300 и более раз.

Свинец обнаружен в семи из восьми изученных образцов сахара (0,1–0,49 мг/кг), в то время как медь – в 3 (0,06–0,31 мг/кг).

Кадмий не обнаружен ни в одном из изученных образцов сахара.

Содержание **Zn**, **Pb**, **Cu** и **Hg** в образцах сахара не превышает требований, регламентируемых государственным стандартом ГОСТ 21–94.

ABSTRACT

HEAVY METALS, CONTENT, SUGAR SAM-PLES, STRIPPING VOLTAMMETRY

By stripping voltammetry method it was established that all 8 studied sugar samples contain **Zn** (1,1–2,9 mg/kg) and **Hg** (0,001–0,009 mg/kg), and the **Zn**-content exceeds more than 300 times **Hg** content or more. Lead was found in 7 out of 8 sugar samples (0,1–0,49 mg/kg), while the copper - 3 (0,06-0,31 mg/kg). Cadmium is not detected in any of the investigated samples of sugar. The content of **Zn**, **Pb**, **Cu**, and **Hg** in sugar samples does not exceed the requirements regulated by state standards GOST 21–94.

Сахароза – тростниковый или свекловичный сахар относится к дисахаридам – состоит из одной молекулы фруктозы и одной молекулы глюкозы.

Первоначально сахар делали из различного сырья. Так, китайцы делали сахар из сорго, в Египте его добывали из бобов, в странах полуострова Индостан – из пальмового сока, в Канаде – из клёнового, а в Польше – из берёзового сока. В Литве сахар получали из корней пастернака, в Республике Беларусь – из петрушки [1].

Способ получения тростникового сахара первыми нашли индусы: они собирали сок сахарного тростника и варили его до образования белоснежных кристаллов. В 1747 году немецкий

химик Андреас Зигисмунд Маркграф выделил сладкое вещество из корнеплодов свёклы, а затем, сравнив его с сахарозой, пришёл к выводу, что они идентичны. С этого момента сахарная свёкла и сахарный тростник стали конкурентами [1, 2].

В настоящее время 40 % сахара в мире изготавливается из свеклы, а 60 % – из сахарного тростника [3]. В России один человек потребляет примерно 100–140 граммов сахара в течение одного дня, в то время как в США – 190 граммов, а в странах Европы и Азии – от 70 до 90 граммов. При этом следует отметить, что норма потребления сахара в день составляет 30–50 граммов [3].

Первый российский сахарный завод (в Пе-

^{*} E-mail: matveiko np@mail.ru (M.P. Matveika)

тербурге) появился по указу Петра I в 1718 году [1]. В настоящее время в сахарной промышленности Российской Федерации имеются 95 сахарных заводов общей мощностью 276,1 тыс. тонн переработки свеклы в сутки, которые за производственный сезон способны выработать свыше 3 миллионов тонн сахара-песка. Кроме того, в межсезонный период (январь—август) на сахарных заводах может быть выработано столько же сахара из импортного сахара-сырца [2]. По данным [4] Российский рынок сахара почти на 90 % состоит из свекловичного сахара и лишь на 10 % – из тростникового. В 2014 г. производство сахара в России составило более 5 млн тонн [4].

Большой объем производства и потребления сахара обусловливает высокие требования к его качеству, которое зависит от качества сырья и качества производства сахара. Требования к качеству сахара-песка регламентируются рядом технических нормативных правовых актов $(TH\Pi A)$ [5-9]. В этих $TH\Pi A$ нормируются органолептические, физико-химические, микробиологические показатели сахара. Однако важнейшим показателем качества являются допускаемые уровни тяжелых металлов в сахаре, поскольку этот показатель характеризует безопасность потребления сахара. Согласно ГОСТ 21-94 в сахаре нормируется содержание Hg, As, Cu, $Pb,\ Cd,\ Zn$ [5]. В других ТНПА нормируется содержание Hg, As, Pb, Cd [6-8]. В таблице 1 приведены требования к содержанию тяжелых металлов, регламентируемые ТНПА.

Из таблицы видно, что в ТР ТС 021/2011, Требованиях № 52 РБ, СанПиН 2.3.2.1078-01 РФ нормируемые допустимые уровни $\textbf{\textit{Pb}}$ (0,5 мг/кг)

и As (1,0 мг/кг) одинаковы и отличаются от допустимых уровней этих металлов в ГОСТ 21-94: 1,0 мг/кг и 0,5 мг/кг для Pb и As соответственно.

Цель работы – методом инверсионной вольтамперометрии определить содержание Zn, Cd, Pb, Cu и Hg в образцах сахара, реализуемого торговыми организациями Республики Беларусь и России.

МЕТОДИКА ЭКСПЕРИМЕНТА

Все растворы для проведения исследований готовили из реактивов марки «ХЧ» на бидистилляте (дважды перегнанной дистиллированной воде).

Значения электродных потенциалов в тексте и рисунках приведены по отношению к хлорсеребряному электроду сравнения в 1М растворе хлорида калия.

Для исследования взяты восемь образцов сахара-песка, реализуемого торговой сетью Республики Беларусь и России:

- Образец № 1 сахар-песок, производство ОАО «Слуцкий сахаро-рафинадный комбинат», Республика Беларусь.
- Образец № 2 сахар-песок, производство ОАО «Городейский сахарный комбинат», Республика Беларусь.
- Образец № 3 сахар-песок, производство ОАО «Скидельский сахарный комбинат», Республика Беларусь.
- Образец № 4 сахар-песок, производство ОАО «Жабинковский сахарный завод», Республика Беларусь.
- Образец № 5 сахар тростниковый нерафинированный, производство Колумбия.
 - Образец № 6 сахар-песок, производство

//×	Допустимые уровни токсичных элементов, мг/кг, не более
тиолици 1 – Реглимо	ентируемые т ппа треоования сооержания в сахаре тяжелых металлов

Vouzno zumvovu už	Допустимые уровни токсичных элементов, мг/кг, не более						
Контролируемый металл	ГОСТ 21—94	TP TC 021/2011	Требования № 52 РБ	СанПиН 2.3.2.1078-01 РФ			
Цинк ($oldsymbol{Z}oldsymbol{n}$)	3,0	-	-	- 1			
Медь (<i>Си</i>)	1,0	-	-	-			
Свинец (${\it Pb}$)	1,0	0,5	0,5	0,5			
Кадмий ($m{C}m{d}$)	0,05	0,05	0,05	0,05			
Ртуть ($m{H}m{g}$)	0,01	0,01	0,01	0,01			
Мышьяк (As)	0,5	1,0	1,0	1,0			

NINNALULA TIITA maabaaauua

ОАО «Лабинский сахарный завод», Российская Федерация.

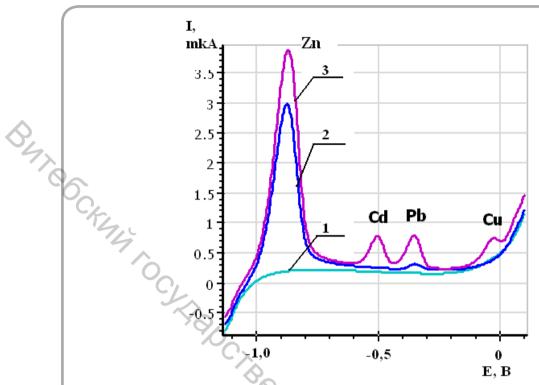
- Образец № 7 сахар-песок, производство ООО «СТАФФ-ДОН», Ростов-на-Дону, Российская Федерация.
- Образец № 8 сахар-песок, производство ОАО «Успенский сахарный завод», Российская Федерация.

Следует отметить, что все образцы сахара-песка, кроме образца N° 5, изготовлены по ГОСТ 21—94.

Подготовку проб сахара проводили в программируемой двухкамерной печи марки ПДП - 18 М, применяя методику, изложенную в работе [9]. Для этого навеску каждого образца сахара массой по 0,2 г помещали в кварцевые стаканы объемом 10 см³, добавляли по 3,0 см³ концентрированной азотной кислоты. Раствор выпаривали при температуре 120° С до получения влажного осадка. Затем к осадку добавляли 2.0 см³ концентрированной азотной кислоты и 0,5 см³ 30% – ного раствора пероксида водорода. После этого образовавшийся раствор выпаривали при температуре 120° С до сухого остатка. Кварцевые стаканы с сухим остатком помещали в камеру озоления печи, в которой термически разлагали пробы при температуре 450° С в течение 30 минут до образования золы. Золу растворяли в смеси 2,0 см³ концентрированной азотной кислоты и 0,5 см³ 30 %-ного раствора пероксида водорода. Полученный раствор выпаривали при температуре 120° С до сухого остатка, который затем озоляли при температуре 450° С в течение 30 минут. Операции растворения золы в смеси 2.0 см^3 азотной кислоты и 0.5 см^3 30 %-го раствора пероксида водорода, выпаривания и последующего озоления при температуре 450° C повторяли до получения однородной золы светло-коричневого цвета, не содержащей включений углерода. После этого золу растворяли в 10 см³ водного раствора, содержащего 0,1 см³ концентрированной муравьиной кислоты. Из полученного раствора для анализа отбирали аликвоту каждой пробы сахара объемом 0,2 см³, помещали в кварцевую электрохимическую ячейку, добавляли фоновый электролит, доведя объем раствора до 10 см³. Анализ проб сахара на содержание цинка, кадмия, свинца и меди проводили на фоне водного раствора муравьиной кислоты концентрацией 0,35 моль/дм³. Для определения в пробах сахара ртути использовали фоновый электролит, содержащий 0,0175 моль/дм³ серной кислоты и 0,002 моль/дм³ хлорида калия.

Определение тяжелых металлов в пробах образцов сахара выполняли инверсионной вольтамперометрией с помощью анализатора марки ТА-4. Анализ сахара на содержание Zn, Cd, Pb и Cu проводили, применяя индикаторный электрод из амальгамированной серебряной проволоки, а на содержание ртути – индикаторный электрод из модифицированного золотом сплава золота 583 пробы. Вспомогательным электродом и электродом сравнения во всех исследованиях служил хлорсеребряный электрод в 1 M растворе хлорида калия.

Для определения содержания Zn, Cd, Pb, Cu и Hg в образцах сахара использовали метод добавок стандартных растворов, содержащих по 2 мг/дм³ Cd, Pb, Cu и Hg и 3 мг/дм³ Zn. Растворы готовили на основе государственных стандартных образцов (ГСО) и бидистиллята. Содержание тяжелых металлов в пробах образцов сахара рассчитывали по разности вольтамперных кривых пробы и фона, а также пробы с добавкой стандартного раствора и фона с помощью специализированной компьютерной программы «VALabTx».


Анализ каждой пробы сахара на содержание Zn, Cd, Pb, Cu и Hg выполняли по 4 раза.

Результаты исследований обрабатывали методом математической статистики по методике, изложенной в работе [10], рассчитав относительные стандартные отклонения (Sr) и интервальные значения $(\pm \Delta x)$ содержания Zn, Cd, Pb, Cu и Hg в сахаре.

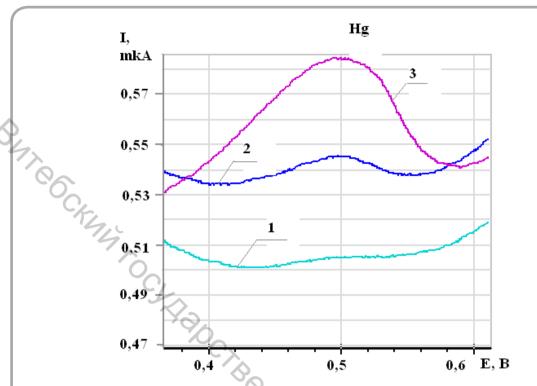
РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Примеры вольтамперных кривых, зарегистрированные при определении Zn, Cd, Pb и Cu в пробе образца сахара № 3 и Hg в пробе образца сахара № 2, представлены на рисунках 1 и 2 соответственно.

Как видно из рисунка 1, на вольтамперной кривой фонового электролита (кривая 1) отсутствуют максимумы тока, связанные с какими-либо анодными процессами, что свидетельствует об отсутствии в электролите веществ, прежде всего \mathbf{Zn} , \mathbf{Cd} , \mathbf{Pb} и \mathbf{Cu} , способных в условиях

1 – фонового электролита (0,35 моль/дм³ муравьиной кислоты); 2 – образца пробы сахара № 3; 3 – образца пробы сахара № 3 с добавкой стандартного раствора, содержащего по 2 мг/дм³ Cd, Pb, Cu и 3 мг/дм³ Zn. Температура раствора 25° C

Рисунок 1 – Анодные вольтамперные кривые


исследования концентрироваться на индикаторном электроде. На вольтамперной кривой раствора пробы сахара N° 3 (кривая 2) имеется лишь два максимума тока окисления: при потенциале – 890 мВ максимум тока связан с анодным окислением (растворением) $\mathbf{Z}\mathbf{n}$, а при потенциале – 350 мВ – с анодным окислением свинца. На вольтамперной кривой, зарегистрированной в растворе пробы сахара N° 3 с добавкой стандартного раствора, содержащего $\mathbf{Z}\mathbf{n}$, $\mathbf{C}\mathbf{d}$, $\mathbf{P}\mathbf{b}$ и $\mathbf{C}\mathbf{u}$, имеется четыре максимума тока окисления при потенциалах (мВ): –890; –500; –350; +100 (кривая 3). Что свидетельствует о присутствии в этом растворе четырех металлов $\mathbf{Z}\mathbf{n}$, $\mathbf{C}\mathbf{d}$, $\mathbf{P}\mathbf{b}$ и $\mathbf{C}\mathbf{u}$.

Анализ данных, представленных на рисунке 2, показывает, что водный раствор фонового электролита практически не содержит ртуть, поскольку на вольтамперной кривой в интервале потенциалов от 440 до 540 мВ наблюдается лишь незначительное увеличение тока окисления (кривая 1). На вольтамперной кривой,

полученной в растворе пробы образца сахара № 2, имеется хорошо выраженный максимум тока при потенциале 490 мВ, что свидетельствует об анодном окислении накопленной на индикаторном электроде ртути (кривая 2). В растворе пробы образца сахара № 2 с добавкой стандартного раствора ртути максимум тока при потенциале 490 мВ увеличивается пропорционально возрастанию концентрации ртути в растворе, что видно на анодной вольтамперной кривой № 3 (рисунок 2).

Подобный, представленным на рисунках 1 и 2, анодным вольтамперным кривым вид характерен также для вольтамперных кривых, зарегистрированных при исследовании содержания $Zn,\ Cd,\ Pb,\ Cu$ и Hg для других изученных образцов сахара.

На основании этих исследований по разности вольтамперных кривых пробы и фона, пробы с добавкой стандартного раствора и фона, используя специализированную компьютерную программу «VALabTx», рассчитано содержание

1 — фонового электролита (0,0175 моль/дм³ H_2SO_4 + 0,002 моль/дм³ KCl); 2 — пробы образца сахара № 2; 3 — пробы образца сахара № 2 с добавкой 0,01 см³ стандартного раствора, содержащего 2 мг/дм³ Hg

Рисунок 2 – Анодные вольтамперные кривые

каждого металла во всех изученных образцах сахара. В таблице 2 представлены результаты экспериментальных исследований: интервальные значения содержания $\mathbf{Z}\mathbf{n}$, $\mathbf{C}\mathbf{d}$, $\mathbf{P}\mathbf{b}$, $\mathbf{C}\mathbf{u}$ и $\mathbf{H}\mathbf{g}$ в образцах сахара и относительные стан-

дартные отклонения полученных результатов.

Из таблицы 2 видно, что во всех изученных образцах сахара содержатся $\mathbf{Z}\mathbf{n}$ и $\mathbf{H}\mathbf{g}$. Причем содержание цинка превышает содержание ртути в 300-2900 раз. Наибольшее содержание $\mathbf{Z}\mathbf{n}$

Таблица 2	Таблица 2 – Содержание Zn, Cd, Pb, Cu и Hg в образцах сахара (мг на 1 кг)											
№ образца сахара	Содержание металла, мг/кг											
	Zn	S _r , %	Cd	S _r , %	Pb	S _r , %	Cu	S _r , %	Hg	S _r , %		
1	2,7±0,07	1,87	нет	-	0,03±0,002	4,79	0,06±0,004	4,79	0,005±0,0003	4,31		
2	2,9±0,08	1,98	нет	_	0,49±0,015	2,20	0,31±0,014	3,25	0,006±0,0004	4,79		
3	2,2±0,06	1,96	нет	_	0,03±0,002	4,79	нет	-	0,008±0,0006	5,39		
4	2,1±0,05	1,71	нет	-	0,19±0,007	2,65	нет	-	0,008±0,0005	4,50		
5	2,1±0,05	1,71	нет	-	0,21±0,008	2,74	0,19±0,009	3,41	0,007±0,0005	5,14		
6	1,1±0,03	1,96	нет	-	0,01±0,001	7,19	нет	-	0,009±0,0007	5,59		
7	2,9±0,09	2,23	нет	-	0,14±0,006	3,08	нет	-	0,008±0,0006	5,39		
8	1,7±0,04	1,69	нет	-	нет	_	нет	-	0,001±0,0001	7,19		

характерно для образцов сахара \mathbb{N}^{2} 2 и 7 и составляет 2,9 мг/кг. Меньше всего $\mathbf{Z}n$ содержится в образце сахара \mathbb{N}^{2} 6 (1,1 мг/кг), что в 2,6 раза меньше, чем в образцах \mathbb{N}^{2} 2 и 7. Содержание $\mathbf{H}\mathbf{g}$ колеблется от 0,001 мг/кг для образца сахара \mathbb{N}^{2} 8 до 0,009 мг/кг для образца сахара \mathbb{N}^{2} 6, то есть отличаются друг от друга в девять раз.

В семи образцах сахара, как видно из таблицы, содержится Pb. Не обнаружен свинец лишь в образце N° 8 (сахар-песок производства ОАО «Успенский сахарный завод», Российская Федерация). Причем, в отличие от Zn и Hg, максимальное содержание этого металла в образце сахара N° 2 (0,49 мг/кг) в 49 раз больше, чем минимальное его содержание в образце сахара N° 6 (0,01 мг/кг).

В трех из восьми изученных образцах сахара, как видно из таблицы 2, содержится небольшое количество меди (мг/кг): 0,06; 0,19; 0,31 в образцах $N^{\circ}N^{\circ}$ 1, 5, 2 соответственно.

Ни в одном из изученных образцах сахара не обнаружен кадмий.

Сопоставляя экспериментально полученное содержание тяжелых металлов в изученных об-

разцах сахара с требованиями ГОСТ 21-94 [5], можно отметить, что оно не превышает требований этого стандарта. Однако в образцах сахара $\mathbb{N}^{\mathbb{N}}$ 2 и 7 содержание $\mathbf{Z}\mathbf{n}$ (2,9 мг/кг) лишь на 0,1 мг/кг меньше требований ГОСТ 21-94 (3,0 мг/кг). Содержание $\mathbf{H}\mathbf{g}$ в образце сахара $\mathbb{N}^{\mathbb{Q}}$ 6 (0,009) также незначительно (на 0,001 мг/кг меньше требований ГОСТ 21-94 (0,01 мг/кг)). Что касается $\mathbf{P}\mathbf{b}$ и $\mathbf{C}\mathbf{u}$, то содержание этих металлов в изученных образцах сахара в 2 и 3 раза соответственно ниже требований ГОСТ 21-94. ВЫВОДЫ

- 1. Кадмий не обнаружен ни в одном из изученных образцов сахара.
- 2. Во всех изученных образцах сахара содержатся $\mathbf{Z}\mathbf{n}$ и $\mathbf{H}\mathbf{g}$, причем $\mathbf{Z}\mathbf{n}$ содержится значительно больше, чем $\mathbf{H}\mathbf{g}$.
- 3. Свинец не обнаружен лишь в одном из восьми изученных образцов сахара, в то время как медь в пяти.
- 4. Содержание Zn, Pb, Cu и Hg в образцах сахара не превышает требований, регламентируемых ТНПА [5-8].

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Производство и требования к качеству сахара. Продвижение товара (2016), режим доступа: http://www.bestreferat.ru/referat-219191.html (дата доступа: 11.05.2016).
- 2. Экспертиза качества сахара (2016), режим доступа: http://www.deplomnik.ru/est-sahar.php (дата доступа: 11.05.2016).
- 3. *Caxap 10 фактов о вреде сахара и его норма потребления* (2016), режим доступа: http://www.ayzdorov.ru/ttermini_sahar.php (дата доступа: 11.05.2016).
- 4. Обзор российского рынка сахара по данным на июнь 2015 г. (2015), режим доступа: http://alto-group.ru/new/451-obzor-rossijskogo-rynka-

REFERENCES

- 1. Proizvodstvo i trebovanija k kachestvu sahara. Prodvizhenie tovara [Production and quality requirements for sugar. Promoting the goods] (2016) [Electronic resource]. Access: http://www.bestreferat.ru/referat-219191.html. Access Date: 05.11.2016.
- 2. *Jekspertiza kachestva sahara* [Examination of the quality of sugar] (2016) [Electronic resource]. Access: http://www.deplomnik.ru/est-sahar.php. Access Date: 05.11.2016.
- 3. Sahar 10 faktov o vrede sahara i ego norma potreblenija [Sugar 10 facts about the dangers of sugar and its consumption rate] (2016) [Electronic resource]. Access: http://www.ayzdorov.ru/ttermini sahar.php. Access Date:

saxara-po-danny...(дата доступа: 30.05.2016).

- 5. *Сахар-песок. Технические условия*. ГОСТ 21-94. Введ. 01.01.1996. Москва, Издательство стандартов, 1996. 10 с.
- О безопасности пищевой продукции. ТР ТС 021/2011. Утв. Решением комиссии таможенного союза от 09.12.2011 г. № 880. 242 с.
- 7. Требования к продовольственному сырью и пищевым продуктам. Утв. Постановлением Министерства здравоохранения Республики Беларусь от 21.07.2013 г. № 52.371 с.
- 8. Производственное сырье и пищевые продукты. Гигиенические требования безопасности и пищевой ценности пищевых продуктов. СанПиН 2.3.2.1078-01. Введ. 01.09.2002. Москва, 2003. 179 с.
- 9. Носкова, Г.Н., Заичко, А.В., Иванова, Е.Е. (2007), Минерализация пищевых продуктов. Методическое пособие по подготовке проб для определения содержания токсичных элементов. Практическое руководство, Томск, Издательство ТПУ, 30 с.
- 10. Васильев, В.П. (2004), *Аналитическая химия. В 2 ч.* Москва, Дрофа, Ч. 1, С. 122.

05.11.2016.

- 4. *Obzor rossijskogo rynka sahara po dannym na ijun'* 2015 g. [Review of the Russian sugar market as of June 2015] (2016) [Electronic resource]. Access: http://alto-group.ru/new/451-obzorrossijskogo-rynka-saxara-po-danny ... Access Date: 05.30.2016.
- 5. Sahar-pesok. Tehnicheskie uslovija [Sugar. Technical condition], State standard (GOST) 21-94. Enter. 01/01/1996. Moscow, Publishing house standards, 1996. 10 p.
- 6. *O bezopasnosti pishhevoj produkcii* [About food safety], Technical regulations of the Customs Union (TR CU) 021/2011. Approved. Commission Decision of the Customs Union on 09.12.2011, the number 880, 242 p.
- 7. Trebovanija k prodovol' stvennomu syr' ju i pishhevym produktam [Requirements for food raw materials and food products], Approved. Resolution of the Republic of Belarus, the Ministry of Health from 21.07.2013, the number 52, 371 p.
- 8. Proizvodstvennoe syr'e i pishhevye produkty. Gigienicheskie trebovanija bezopasnosti i pishhevoj cennosti pishhevyh produktov [Industrial raw materials and food products. Hygienic requirements for safety and nutritional value of foods], Sanitary rules and norms 2.3.2.1078-01. Enter. 01.09.2002. Moscow, 2003. 179 p.
- 9. Noskova, G.N., Zaichko A.V., Ivanova E.E. (2007), Mineralizacija pishhevyh produktov. Metodicheskoe posobie po podgotovke prob dlja opredelenija soderzhanija toksichnyh jelementov [Mineralization food. Guidelines on the preparation of samples for the determination of the content of toxic elements. Practical Guide], Tomsk, Publishing house TPU, 30 p.
- 10. Vasiliev, V.P. (2004), *Analiticheskaja himija*. *V 2 ch* [Analytical chemistry. 2 p.], Moscow, Bustard, Part 1. P. 122.

Статья поступила в редакцию 09. 09. 2016 г.