# КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА И МАГНИТНЫЕ СВОЙСТВА ТВЕРДЫХ РАСТВОРОВ Mn<sub>1-x</sub>Fe<sub>x</sub>NiGe (0,05≤x≤0,30)

# Римский Г.С., Магонов С.Н., Митюк В.И., Янушкевич К.И.

НПЦ НАН Беларуси по материаловедению, Брест, Беларусь, rimskiy@physics.by

## Введение.

Интерметаллические сплавы И твердые растворы. которые обладают магнитоструктурными фазовыми переходами, представляют интерес для теории и практики благодаря наличию таких эффектов как, магнитосопротивление, магнитокалорический эффект, магнитострикция. Фазовые превращения в них связаны с изменением плотности электронных состояний вблизи поверхности Ферми. В связи с этим исследование особенностей деформации элементарной кристаллической ячейки, изменение параметров ячейки под воздействием температуры, давления, легирования является важным для понимания механизма фазовых превращений. Сплавы и твердые растворы на основе MnNiGe являются удобными модельными объектами изучения статических и динамических искажений кристаллической решетки, поскольку в них реализуются магнитоструктурные превращения, как первого, так и второго рода. Цель работы - изучение особенностей кристаллического упорядочения и магнитных свойств закаленных образцов твердых растворов Mn<sub>1-x</sub>Fe<sub>x</sub>NiGe (0,05≤*x*≤0,30).

#### Методика эксперимента.

Поликристаллические порошки получены синтезированы в однозонной печи сопротивления с последующей закалкой в воде. Состав и параметры кристаллической ячейки изучены в *СиКа*-излучении. Температурные зависимости удельной намагниченности исследованы пондеромоторным методом в интервале температур 80≤*T*≤700К. Удельная намагниченность насыщения и параметры петель гистерезиса образцов определены в магнитных полях до 14 Тл при температурах 5 и 80 К.

#### Результаты и обсуждение.

На рисунке 1 представлены рентгенограммы твердых растворов Mn<sub>1-x</sub>Fe<sub>x</sub>NiGe (0,05≤*x*≤0,30).



0,15; 0,2; 0,25, 0,3

# Перспективные материалы и технологии

Анализ рентгенограмм показал кристаллическую однофазность составов. Установлено, что составы Mn<sub>1-x</sub>Fe<sub>x</sub>NiGe (0,05≤x≤0,30) обладают гексагональной структурой типа Ni<sub>2</sub>In (B8<sub>2</sub>) пространственной группы P6<sub>3</sub>/mmc ( $D_{6h}^4$ ). В таблице 1 приведены значения параметров *а* и *с*, соотношения осей *с/а*, величины объемов элементарных ячеек V и рентгеновская плотность  $\rho_{ceH}$  порошков системы Mn<sub>1-x</sub>Fe<sub>x</sub>NiGe.

Таблица 1 - Величины *а* и *с*, соотношения осей *с*/*а*, объемы *V* элементарных ячеек и рентгеновская плотность  $\rho_{\text{рен}}$  образцов Mn<sub>1-x</sub>Fe<sub>x</sub>NiGe

|      |       |       |      | <u>,                                    </u> |                            |
|------|-------|-------|------|----------------------------------------------|----------------------------|
| x    | а,нм  | C,HM  | c/a  | <i>V</i> , 10 <sup>-2</sup> нм <sup>3</sup>  | $ ho_{ hoer}$ (г/см $^3$ ) |
| 0.05 | 0,409 | 0,535 | 1,31 | 7,751                                        | 7,981                      |
| 0.1  | 0,408 | 0,535 | 1,31 | 7,713                                        | 8,022                      |
| 0.15 | 0,408 | 0,534 | 1,31 | 7,698                                        | 8,040                      |
| 0.2  | 0,407 | 0,534 | 1,31 | 7,661                                        | 8,081                      |
| 0.25 | 0,407 | 0,533 | 1,31 | 7,646                                        | 8,099                      |
| 0.3  | 0,406 | 0,529 | 1,30 | 7,552                                        | 8,201                      |

Температурные зависимости удельной намагниченности составов 0,05≤х≤0,30 представлены на рисунке 2.





Из зависимостей рисунка 2  $\sigma=f(T)$  следует, что вблизи температур T<sub>c</sub> разрушения дальнего магнитного упорядочения наблюдается гистерезис. Значения удельной намагниченности, средних магнитных моментов при 80К и T<sub>c</sub> представлены в табл.2.

| Х    | σ <sub>80К</sub> , А·м²·кг⁻¹ | Т <sub>с</sub> , <i>К</i> | <b>μ<sub>80К.,</sub>μ</b> Б |
|------|------------------------------|---------------------------|-----------------------------|
| 0.05 | 13,7                         | 272                       | 0,45                        |
| 0.10 | 34,5                         | 183                       | 1,15                        |
| 0.15 | 36,1                         | 147                       | 1,20                        |
| 0.20 | 30,1                         | 135                       | 1,02                        |
| 0.25 | 20,4                         | 133                       | 0,68                        |
| 0.30 | 13,9                         | 132                       | 0,46                        |

Таблица 2 - Величины удельной намагниченности при 80К, температуры Кюри и средних магнитных моментов Mn<sub>1-x</sub>Fe<sub>x</sub>NiGe (0,05≤x≤0,30)

На рисуноке 3 представлены зависимости удельной намагниченности. При температуре 300К образцы парамагнитны.



сунок 3 – Петли гистерезиса удельной намагниченности мп<sub>1-х</sub>ге<sub>х</sub>мю составов х 0,05; 0,10; 0,15, 0,20; 0,25; 0,30 при температурах 5 и 80 К.

Величины магнитных характеристик твердых растворов системы Mn<sub>1-x</sub>Fe<sub>x</sub>NiGe при 5 и 80 К приведены в таблице 3.

| Y    | T=5K                        |                      |                              |                       | T=80 K              |                              |                      |                              |                       |                                |
|------|-----------------------------|----------------------|------------------------------|-----------------------|---------------------|------------------------------|----------------------|------------------------------|-----------------------|--------------------------------|
| Х    | σ <sub>s</sub> ,<br>А·м²·кг | μ,<br>μ <sub>в</sub> | σ <sub>r</sub> ,<br>А∙м²∙кг⁻ | Н <sub>с</sub> ,<br>Э | $\sigma_s/\sigma_r$ | σ <sub>s</sub> ,<br>А∙м²∙кг⁻ | μ,<br>μ <sub>в</sub> | σ <sub>r</sub> ,<br>А∙м²∙кг⁻ | Н <sub>с</sub> ,<br>Э | σ <sub>s</sub> /σ <sub>r</sub> |
| 0,05 | Ι                           | -                    | 0,6                          | 550                   | -                   | Ι                            | Ι                    | 0,34                         | 385                   | -                              |
| 0,10 | 72,91                       | 2,43                 | 1,8                          | 625                   | 40,51               | 69,85                        | 2,33                 | 0,6                          | 250                   | 116,42                         |
| 0,15 | 38,51                       | 1,29                 | 10,75                        | 520                   | 3,58                | 34,05                        | 1,14                 | 0,875                        | 70                    | 38,91                          |
| 0,20 | 31,01                       | 1,04                 | 14,5                         | 930                   | 2,14                | 25,49                        | 0,85                 | 0,77                         | 90                    | 33,10                          |
| 0,25 | 20,08                       | 0,67                 | 13,4                         | 1600                  | 1,50                | 17,73                        | 0,59                 | 0,34                         | 25                    | 52,15                          |
| 0,30 | 14,97                       | 0,50                 | 11,3                         | 3350                  | 1,32                | 12,35                        | 0,41                 | 0                            | 0                     | 0                              |

Таблица 3 - Удельная намагниченность насыщения, магнитный момент, удельная остаточная намагниченность, коэрцитивная сила при температурах 5 и 80К

Выводы.

1. Методом синтеза в твердой фазе с последующей закалкой в воду получены однофазные образцы Mn<sub>1-x</sub>Fe<sub>x</sub>NiGe в интервале концентраций 0,05≤x≤0,30.

2. Увеличение концентрации железа приводит к уменьшению параметров элементарной кристаллической решетки.

3. Установлено, что температура Кюри исследованных образцов уменьшается при увеличении концентрации *х* железа при замещении.