Однако малое инновационное предпринимательство сталкивается с трудностями: низкий уровень инвестиций в инновационную сферу, невысокие инвестиционные возможности в национальной экономике, несовершенство кредитно-финансового механизма.

В тоже время развитие малого предпринимательства является эффективным способом решения некоторых сложных задач регулирования инновационной сферы, таких как:

- -мобилизация личной инициативы наиболее квалифицированной и предприимчивой части научно-технического персонала;
 - -привлечение негосударственных источников финансирования;
- -распределение риска, связанного с неопределенностью конечной эффективности нововведений, между государством и хозяйствующими субъектами.

Важнейшим условием эффективности малого инновационного предпринимательства является обеспечение организационно-правовых, финансово-экономических и социально-политических механизмов стимулирования малых форм предпринимательской деятельности, развития внешней инфраструктуры. Специалистами выделяются следующие важные направления поддержки малого инновационного предпринимательства:

- -стабильное организационно- правовое обеспечение;
- -стимулирующая государственная налоговая политика;
- -целенаправленная государственная финансово-инвестиционная политика;
- -организация маркетинговых, информационных услуг.

Поддержка развития малого предпринимательства является одной из важнейших задач, стоящих перед странами с переходной экономикой. Малые и средние предприятия стимулируют развитие рыночной среды, содействуют увеличению занятости, реорганизации крупных государственных предприятий, дают экономике дополнительную гибкость в производстве потребительских товаров и услуг, способствуют развитию конкурентной среды.

В качестве основных направлений государственной поддержки инновационного предпринимательства необходимо реализовать:

- -организационно-правовое обеспечение инновационного предпринимательства;
- -целенаправленную государственную налоговую и финансовую политику;
- -организацию информационно-консультационных услуг;
- -научно-техническую помощь инновационным предприятиям.

ТЕОРИЯ ИГР И ЕЕ РЕАЛИЗАЦИЯ В СИСТЕМАХ КОМПЬЮТЕРНОЙ АЛГЕБРЫ

В.Л. Шарстнев УО «Витебский государственный технологический университет»

Классификацию игровых ситуаций можно проводить по:

- 1. количеству игроков (два и n);
- 2. количеству стратегий (конечные и бесконечные);
- 3. характеру взаимодействия игроков (бескоалиционные и коалиционные);
- 4. характеру выигрыша (с нулевой суммой и с ненулевой суммой),
- 5. виду функций выигрыша (матричные, биматричные, непрерывные, выпуклые) и т.д. [1].

Рассмотрим некоторые аспекты применения теории игр с использованием системы компьютерной алгебры Maple [2] на примере матричных игр, как наиболее простых и достаточно полно разработанных теоретически.

Матричная игра — это конечная игра двух игроков с нулевой суммой, в которой задаётся выигрыш игрока 1 в виде матрицы (строка матрицы соответствует номеру применяемой стратегии игрока 1, столбец — номеру применяемой стратегии игрока 2; на пересечении строки и столбца матрицы находится выигрыш игрока 1, соответствующий применяемым стратегиям).

Первый игрок имеет m стратегий i=1,2,...,m, второй имеет n стратегий j=1,2,...,n. Каждая стратегия игрока $i=\overline{1,m}$; $j=\overline{1,n}$ часто называется чистой стратегией.

Если рассмотреть матрицу выигрышей

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1j} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{y} & \cdots & a_{m} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mj} & \cdots & a_{mn} \end{pmatrix}$$

то проведение каждой партии матричной игры с матрицей A сводится к выбору игроком 1 i-й строки, а игроком 2 j-го столбца и получения игроком 1 (за счёт игрока 2) выигрыша a_{ij} .

Стратегия игрока является оптимальной, если применение этой стратегии обеспечивает ему наибольший гарантированный выигрыш при всевозможных стратегиях другого игрока. Исходя из этих позиций, игрок 1 исследует матрицу выигрышей A следующим образом: для каждого значения i ($i=\overline{1,m}$) определяется минимальное значение выигрыша в зависимости от применяемых стратегий игрока 2

$$\min_{i} a_{ij} \qquad (i = \overline{1, m})$$

т.е. определяется минимальный выигрыш для игрока 1 при условии, что он примет свою i-ю чистую стратегию, затем из этих минимальных выигрышей отыскивается такая стратегия $i = i_0$, при которой этот минимальный выигрыш будет максимальным, т.е. находится нижняя чистая цена игры

$$\max_{i} \min_{j} a_{ij} = a_{i_{OJO}} = \underline{\alpha}$$
 (1)

Игрок 2 при оптимальном своём поведении должен стремится по возможности за счёт своих стратегий максимально уменьшить выигрыш игрока 1. Поэтому для игрока 2 отыскивается

т.е. определяется \max выигрыш игрока 1, при условии, что игрок 2 применит свою j-ю чистую стратегию, затем игрок 2 отыскивает такую свою $j=j_1$ стратегию, при которой игрок 1 получит \min выигрыш, т.е. находится чистая верхняя цена игры

$$\min_{j} \max_{i} a_{ij} = a_{i_{\parallel},i_{\parallel}} = \overline{\alpha}$$
 (2).

Седловая точка — это пара чистых стратегий (i_o,j_o) соответственно игроков 1 и 2, при которых достигается равенство $\alpha = \overline{\alpha}$ и определяется чистая цена игры $\upsilon = \alpha = \overline{\alpha}$.

Пара чистых стратегий (i_o,j_o) игроков 1 и 2, образующая седловую точку и седловой элемент a_{i_o,j_o} , называется решением игры. При этом i_o и j_o называются оптимальными чистыми стратегиями соответственно игроков 1 и 2.

Исследование в матричных играх начинается с нахождения её седловой точки в чистых стратегиях. Если матричная игра имеет седловую точку в чистых стратегиях, то нахождением этой седловой точки заканчивается исследование игры. Если же в игре нет седловой точки в чистых стратегиях, то можно найти нижнюю и верхнюю чистые цены этой игры, которые указывают, что игрок 1 не должен надеяться на выигрыш больший, чем верхняя цена игры, и может быть уверен в получении выигрыша не меньше нижней цены игры. Улучшение решений матричных игр следует искать в использовании секретности применения чистых стратегий и возможности многократного повторения игр в виде партии. Этот результат достигается путём применения чистых стратегий случайно, с определённой вероятностью.

Чистая стратегия есть частный случай смешанной стратегии. Действительно, если в смешанной стратегии какая-либо *i*-я чистая стратегия применяется с вероятностью 1, то все остальные чистые стратегии не применяются. И эта *i*-я чистая стратегия является частным случаем смешанной стра-

тегии. Для соблюдения секретности каждый игрок применяет свои стратегии независимо от выбора другого игрока.

Средний выигрыш игрока 1 в матричной игре с матрицей А выражается в виде математического ожидания его выигрышей

$$E(A, x, y) = \sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij} x_{i} y_{j} = x A y^{T}$$

Первый игрок имеет целью за счёт изменения своих смешанных стратегий x максимально увеличить свой средний выигрыш E(A, x, y), а второй — за счёт своих смешанных стратегий стремится сделать E(A, x, y) минимальным, т.е. для решения игры необходимо найти такие x и y, при которых достигается верхняя цена игры

$$\overline{\alpha} = \min_{y} \max_{x} E(A, x, y).$$

Аналогичной должна быть ситуация и для игрока 2, т.е. нижняя цена игры должна быть

$$\underline{\alpha} = \max_{y} \min_{y} E(A, x, y).$$

Подобно играм, имеющим седловые точки в чистых стратегиях, вводится следующее определение: оптимальными смешанными стратегиями игроков 1 и 2 называются такие наборы x° , y° соответственно, которые удовлетворяют равенству

$$\min_{y} \max_{x} E(A, x, y) = \max_{x} \min_{y} E(A, x, y) = E(A, x^{\circ}, y^{\circ}).$$

Величина $E(A, x^{o}, y^{o})$ называется при этом ценой игры и обозначается через v.

Имеется и другое определение оптимальных смешанных стратегий: x^o , y^o называются оптимальными смешанными стратегиями соответственно игроков 1 и 2, если они образуют седловую точку:

$$E(A, x, y^{\circ}) \leq E(A, x^{\circ}, y^{\circ}) \leq E(A, x^{\circ}, y)$$

Оптимальные смешанные стратегии и цена игры называются решением матричной игры.

Для реализации приведенных выше теоретических аспектов матричных игр с нулевой суммой с использованием системы компьютерной алгебры Maple разработан набор процедур, который позволяет достаточно просто получить оптимальное решение.

Библиотека содержит следующие процедуры:

NºNº	Название	Назначение
1.	Dominate	Возвращает матрицу решения игры
2.	Saddle	Возвращает перечень седловых точек матричной игры с нулевой суммой
3.	Graphsolve	Возвращает графическое решение в случае наличия двух чистых стратегий
4.	Bestanswer	Определяет лучшую стратегию для получения максимального выигрыша
5.	Solution	Находит оптимальную стратегию путем решения эквивалентной системы линейных уравнений
6.	Revsimp	Находит оптимальную стратегию путем исправленного симплекса

Приведем некоторые примеры использования разработанных процедур.

Пример 1.

Зададим игровую матрицу А:

A:=matrix(3, 4, [9, 5, 6, 7, 1, 4, 3, 8, 6, 3, 2, -4]);

$$A := \begin{bmatrix} 9 & 5 & 6 & 7 \\ 1 & 4 & 3 & 8 \\ 6 & 3 & 2 & -4 \end{bmatrix}$$

Определим наличие седловой точки:

Седловая точка определяется парой индексов (i_o = 1; j_o = 2).

Найдем решение заданной игровой матрицы:

5

Чистой ценой игры является величина $\upsilon = \underline{\alpha} = \overline{\alpha} = 5$.

Пример 2.

A:=matrix(4,4,[2,-3,4,5,3,7,8,4,5,1,3,7,4,6,2,9]);

$$A := \begin{bmatrix} 2 & -3 & 4 & 5 \\ 3 & 7 & 8 & 4 \\ 5 & 1 & 3 & 7 \\ 4 & 6 & 2 & 9 \end{bmatrix}$$

saddle(A);

{ }

Анализ игровой матрицы в соответствии с использованной процедурой saddle показал, что данная игровая матрица не имеет седловой точки.

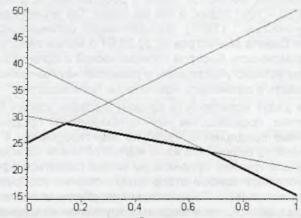
> A:=matrix(2,3,[50,15,20,25,40,30]);

$$A := \begin{bmatrix} 50 & 15 & 20 \\ 25 & 40 & 30 \end{bmatrix}$$

> saddle(A);

{

> graphsolve(A);



Как видно из приведенного выше, были разработаны процедуры решения матричных игр с нулевой суммой для двух игроков. В дальнейшем предполагается разработка стандартных процедур для решения коалиционных игр и игр с ненулевой суммой.

Список литературы.

- 1. Кузнецов А.В. и др. Высшая математика: Математическое программирование.- Мн.: Вышэйшая школа, 1994.- 286с.
- 2. http://www.mapleapps.com Julien Ugon, Nigel Backhouse. Matrix Game theory. University Blaise Pascal, France, University of Liverpool, UK, 2000.