5. Сергеев, В. Т., Малафеев, Р. М., Николаев, С. Д. Особенности технологии и оборудования для изготовления армирующих многослойных тканей // Российская неделя текстильной и легкой промышленности: сборник докладов Второго Международного научно-практического симпозиума (Москва, 21 февраля 2017 г, Москва, Экспоцентр). с. 189-194.

УДК 677.31

ТЕХНОЛОГИЯ ПРОИЗВОДСТВА МНОГОКОМПОНЕНТНОЙ ПРЯЖИ ШЕРСТЯНОГО ТИПА С СОДЕРЖАНИЕМ БИООБРАБОТАННЫХ ЛЬНЯНЫХ ВОЛОКО

H Силич Т.В., директор, к.т.н., Бирич Л.И., зам. директора по науке, Плавская Л.К., гл. специалист.

Центр научных исследований легкой промышленности, г. Минск, Республика Беларусь

<u>Ключевые слова:</u> шерсть, полиэфир, хлопок, вискоза, биообработанные льняные волокна, льносодержащая пряжа, ткань, физико-механические свойства.

Реферат. Объектами исследований являлись технологический процесс получения многокомпонентной льносодержащей пряжи шерстяного типа ткацкого назначения с использованием биообработанных льняных волокон, а также физико-механические свойства полученного вида пряжи и льносодержащей ткани костюмно-плательной группы, выработанной с ее использованием.

В последнее время наблюдается рост интереса покупателей к изделиям из разнообразных натуральных волокон, в связи с чем весьма актуальным направлением исследований в текстильной промышленности стало развитие ассортимента льносодержащей пряжи и получение тканей новых структур с расширением сферы их применения. Одна из последних научно-исследовательских работ РУП «Центр научных исследований легкой промышленности» была проведена в камвольном производстве с целью получения новых видов полушерстяной пряжи на основе биообработанного льна и разработки заправочных параметров производства костюмно-плательных тканей современного ассортимента.

Разработанная ранее технология биообработки короткого льна как способ его подготовки к прядению позволила расширить ассортимент пряжи хлопкового типа в направлении разнообразия сырьевых составов и утонения по линейной плотности до 11,8 текс. Результаты работы обеспечили возможность освоения выпуска на предприятиях отрасли облегченной трикотажной и текстильной продукции, что в полной мере отвечает современным тенденциям моды. В камвольном производстве технологические работы и экспериментальные исследования с биообработанным льном проводились впервые.

В ходе выполнения обширной научно-исследовательской работы определены параметры технологического процесса получения пряжи шерстяного типа ткацкого назначения с использованием волокон разной природы – хлопковых, вискозных, биообработанных льняных, шерстяных и полиэфирных (ПЭ). Для выработки многокомпонентной пряжи были последовательно изготовлены партии пряжи ткацкого назначения:

- пряжи хлопкового типа линейной плотности 20 текс сырьевого состава: длинноволокнистый хлопок 45 % / Tencel $^{\text{®}}$ 40 % / биообработанный лен 15 %;
- полушерстяной гребенной пряжи линейной плотности 16,0 текс сырьевого состава: шерсть 50 %/ Π 3 50 %;
- многокомпонентной пряжи результирующей линейной плотности 36.0 текс сырьевого состава: хлопок 25 % / Tencel $^{\$}$ 22 % / шерсть 22 % / ПЭ 22 % / биообработанный лен 9 %.

Разработанная технология реализуется на хлопко- и шерстопрядильном оборудовании, которое обеспечивает высокий уровень процессов формирования полуфабрикатов и пряжи. В ходе исследований определены оптимальные заправочные параметры работы оборудова-

ния по всем переходам производственного цикла, обеспечивающие стабильность технологического процесса получения пряжи и ее требуемое качество. В таблице 1 представлены результаты испытаний физико-механических свойств и качественных показателей многокомпонентной пряжи результирующей линейной плотности 36 текс сырьевого состава: хлопок 25% / Tencel 22% / шерсть 22% / 120%

Таблица 1 – Показатели физико-механических свойств пряжи

№ п/п	Наименование показателей	Фактическое значение показателей
1	Линейная плотность, текс	35,1
2	Разрывная нагрузка, сН	439
3	Относительная разрывная нагрузка, сН/текс	12,5
4	Разрывное удлинение, %	9,3
5	Крутка, кр./м	721
6	Коэффициент крутки	42,7
7	Коэффициент вариации по, %	
	– линейной плотности,	1,5
	– разрывной нагрузке,	12,5
	– крутке	6,9
8	Количество жгутов на 1000 м, шт.	1,4

Анализ данных, представленных в таблице, свидетельствует, что полученная многокомпонентная льносодержащая пряжа достаточно равномерная по структуре и физикомеханическим свойствам. В целом изготовленная пряжа отвечает требованиям СТБ 2102-2010 «Пряжа чистошерстяная, шерстяная и полушерстяная. Общие технические условия» и пригодна для дальнейшей переработки в ткацком производстве.

Апробация нового вида камвольной пряжи на основе биообработанного льна проводилась при отработке заправочных параметров получения костюмно-плательной ткани комбинированным переплетением на ткацких станках ОптиМакс-8-R220 ф. «Пиканоль». Проведен подбор наиболее рациональных заправочных параметров ткацкого станка с учетом свойств полученной льносодержащей пряжи и необходимой структуры ткани. Обеспечение потребительских и эстетических свойств ткани организовано за счет технологического процесса отделки, состоящего из двух этапов: предварительной и заключительной отделки. Учитывая тот факт, что условия отделки шерстяных тканей значительно отличаются от условий отделки хлопчатобумажных и льняных тканей, был проведен комплекс исследований. В готовом виде получена двусторонняя ткань, в которой одна из сторон в результате колористического решения имитирует джинсовую ткань, а другая — имеет льноподобный вид. Проведены испытания физико-механических и потребительских свойств готовой ткани на соответствие требованиям ТНПА. Результаты испытаний представлены в таблице 2.

Таблица 2 – Показатели физико-механических и потребительских свойств ткани

таблица 2 показатели физико-механических и потребительских евоисть ткани		
Наименование показателя	Значение пока-	
Паименование показателя	зателя	
Ширина ткани с кромками	154	
Кондиционная поверхностная плотность, г/м ²	184,2	
Количество нитей на 10 см: по основе	320	
по утку	267	
Разрывная нагрузка, Н: по основе	600	
по утку	520	
Удлинение при разрыве, %: по основе	44	
по утку	45	
Изменение линейных размеров после мокрой обработки, %		
по основе	-0,8	
по утку	-0,6	
Коэффициент сминаемости	0,15	
Воздухопроницаемость, дм ³ /м ² ·с	173	
Устойчивость к пиллингообразованию, балл	4 (хорошая)	
	Наименование показателя Ширина ткани с кромками Кондиционная поверхностная плотность, г/м² Количество нитей на 10 см: по основе по утку Разрывная нагрузка, Н: по основе по утку Удлинение при разрыве, %: по основе по утку Изменение линейных размеров после мокрой обработки, % по основе по утку Коэффициент сминаемости Воздухопроницаемость, дм³/м²·с	

Витебск 2018 75

Анализ полученных данных о свойствах готовой ткани подтверждает ее соответствие требованиям ГОСТ 28000-2004, ТР ТС 017/2011 и ТР ТС 007/2011. Дальнейшие работы проводились с целью получения более широкого ассортимента костюмно-плательных тканей с использованием многокомпонентной льносодержащей пряжи.

Список использованных источников

- 1. Живетин, В. В. Моволен (модифицированное волокно льна) / В. В. Живетин [и др.]. Москва : Российский заочный институт текстильной и легкой промышленности, 2000. 205 с.
- 2. Создать и внедрить инновационные технологические процессы получения пряж и материалов с использованием отечественных сырьевых ресурсов: отчет о НИР (промеж.) / РУП «Центр научных исследований легкой промышленности»; рук. темы Л. К. Плавская. Минск, 2012. 183 с.
- 3. Разработать и внедрить технологии производства инновационных видов пряжи, тканей и трикотажа на основе биотехнологических способов подготовки льна: отчет о НИР (заключ.) / РУП «Центр научных исследований легкой промышленности»; рук. темы Л. К. Плавская. Минск, 2015. 280 с.
- Разработать и освоить новые технологии биоподготовки короткого льна и его переработки в инновационную текстильную и трикотажную продукцию: отчет о НИР (заключ.) / РУП «Центр научных исследований легкой промышленности»; рук. темы Л. К. Плавская. Минск, 2017. 293 с.

УДК 677.017

РАСШИРЕНИЕ АССОРТИМЕНТА ПОЛИЭФИРНЫХ НИТЕЙ

Скобова Н.В., доц., Косоян Е.Ш., студ., Ясинская Н.Н., доц. Витебский государственный технологический университет, г. Витебск, Республика Беларусь

Ключевые слова: функциональные полиэфирные нити.

Реферат. Химическая отрасль по производству синтетических волокон постоянно развивается. Мировой текстильный рынок пополняется перечнем синтетических нитей с новыми свойствами: антибактериальные, антистатические, негорючие и т.д. На территории Республики Беларусь новатором в области расширения ассортимента полиэфирных нитей является ОАО «Светлогорскхимволокно», выпустившее на рынок нити специального назначения: микрофиламентные (0,1-0,03 текс ЭН), с функцией управления влагой, функциональные с добавкой Cool Black, с антибактериальными свойствами. Проведены исследования свойств трикотажных полотен из нитей Quick Dry с целью выявления функциональных свойств. Установлено, что полотна приобретают высокую капиллярность и намокаемость, снижено время высыхания образцов после пропитки.

Полиэфирные волокна являются самым распространенным и быстро развивающимся видом химических волокон. Объем их производства превышает суммарный выпуск всех других химических волокон, а темпы его прироста можно назвать стремительными. Это обусловлено доступностью исходного сырья, высокопроизводительными процессами получения, удовлетворяющими технологическим и экологическим требованиям.

Популярность полиэфирных волокон объясняется широким спектром их свойств:

- высокая стабильность структуры, обуславливающая малую усадочность;
- высокое эластичное восстановление, почти полное отсутствие вынужденной эластичной деформации, что предопределяет стабильность формы изделий и несминаемость тканей;
 - незначительное изменение механических свойств во влажном состоянии;