UDC 677.022

INVESTIGATION OF WET-HEAT TREATMENT OF CORE-SPUN COTTON/ POLYESTER YARN WITH THE USE OF ELECTROMAGNETIC WAVES OF ULTRA HIGH FREQUENCY

ИССЛЕДОВАНИЕ ПРОЦЕССА ВЛАЖНО-ТЕПЛОВОЙ ОБРАБОТКИ КОМБИНИРОВАННОЙ ХЛОПКОПОЛИЭФИРНОЙ НИТИ С ИСПОЛЬЗОВАНИЕМ ЭЛЕКТРОМАГНИТНЫХ ВОЛН ТОКОВ СВЕРХВЫСОКОЙ ЧАСТОТЫ

Kulandin, A., Kogan, A.

Vitebsk State Technological University, Belarus, e-mail: kulandin.vstu@gmail.com

Куландин, А. С., Коган, А. Г.

Витебский государственный технологический университет, Беларусь

ABSTRACT

АННОТАЦИЯ

YARN, DEGREE OF BULK, MICROWAVE, BULK, SHRINKAGE

ПРЯЖА, ОБЪЕМ, МИКРОВОЛНОВАЯ ПЕЧЬ, ОБЪЕМ, УСАДКА

The aim of the research is to develop a new technology for producing high-bulk yarns using microwave currents. The paper discusses experiments on increase of bulk of the core-spun yarn, results of research show 1,5-3 times increase in bulk of a yarn. Целью проводимых исследований является разработка новой технологии получения высокообъёмной пряжи с использованием токов СВЧ. В работе проведены эксперименты по повышению объёмности комбинированной пряжи, результаты исследований показывают увеличение объёмности пряжи в 1,5-3 раза.

The principle of manufacturing textile materials with specific properties (high shrinkage and high bulk) is the mixing of high shrinkage (20 - 60 %) and low-shrinkage fibers and filaments. After joint processing, a textile material is produced that has the ability to increase its bulk as a result of wet-heat treatment in a unstrained state. In this case, the high-shrinkage component is shortened, taking a more definite orientation along the axis of the material. The low shrinkage component is wrapped around the high shrinkable one, taking a less oriented position in the same direction. This gives the material greater fluffiness, significantly reduces the bulk density and increases the transverse dimensions [1].

VITEBSK 2018 25

In our work we used as a high-shrinkage component a polyester shrinkage complex yarn linear shrinkage, which accounts for 48 % of the content, produced by OJSC «Svetlogorsk Khimvolokno» by the method of physical modification of the linear density of 16.8 tex. The cotton roving of the combed spinning system with a linear density of 250 tex was used as a low shrinkable component. Physical and mechanical properties indicators of high shrinkable yarn are shown in Table 1.

Table 1 - Characteristics of polyester high shrink yarn

Index	Indicator value
Nominal linear density of the thread, tex	16.8
Specific breaking load, mN / tex,	331
The elongation of the thread at break, %	30
Linear shrinkage, %	48
The number of entangling	14
Mass fraction of lubricant, %	1.3
Actual humidity, %	0.5

The methodology for conducting research into the process of increasing the bulk of a core-spun yarn, of various linear density using microwave electromagnetic waves consists of the following stages [2]:

- 1. Preparation of samples according to GOST 6611.0 73.
- 2. Moistening of the core-spun high-shrinkable threads to excessive moisture content.
- 3. Water removal to a residual moisture content of 100–300 %.
- 4. Wet-heat treatment by ultra-high frequency currents of electromagnetic waves.

A comparison of the performance of the core-spun cotton-polyester yarn before and after wet-heat treatment with electromagnetic waves of ultra-high frequency currents is presented in Table 2.

As a result of experimental studies, it is established that the use of complex high-shrinkage yarns enables to increase the bulk of the core-spun yarn by more than 200 %. Application of microwave currents enables to reduce the time of wet-heat treatment by 1.5-2 times compared to the traditional wet-heat treatment used in textile enterprises, which will allow increasing the bulk of output and reducing energy costs.

26 VITEBSK 2018

Table 2 – Comparison of a core-spun cotton-polyester yarn indicators before and after wet-heat treatment with ultra-high frequency currents of electromagnetic waves

	Indicator value	
Index	Before wet heat treatment	After wet-heat treatment
Composition	39 % – Polyester, 61 % – Cotton	
Linear density of the core-spun yarn, tex	42x2	53,5x2
Explosive loading, cN / tex	13,3	10
Explosive elongation, %	22.30	26
Diameter, mm	0.7	1.2
Bulk, g / cm ³	4.58	10.54

REFERENCE

- 1. Медвецкий, С. С., Переработка химических волокон и нитей / С. С. Медвецкий. Витебск: УО «ВГТУ»
- 2. Бизюк, А. Н., Жерносек, С. В., Ольшанский, В. И., Ясинская, Н. Н., Коган А. Г., Интенсификация процесса термообработки химических высокоусадочных нитей, Вестник Витебского государственного технологического университета. 2014. —Вып. 27. С. 9-16.

VITEBSK 2018 27